サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A method for the isolation of neural stem cells and oligodendrocyte progenitor cells from the brains of live rats is presented here in experimental detail. It allows multiple collections of these cells from the same animals without compromising their well-being.

Abstract

Tissue-specific neural stem cells (NSCs) remain active in the mammalian postnatal brain. They reside in specialized niches, where they generate new neurons and glia. One such niche is the subependymal zone (SEZ; also called the ventricular-subventricular zone), which is located across the lateral walls of the lateral ventricles, adjacent to the ependymal cell layer. Oligodendrocyte progenitor cells (OPCs) are abundantly distributed throughout the central nervous system, constituting a pool of proliferative progenitor cells that can generate oligodendrocytes.

Both NSCs and OPCs exhibit self-renewal potential and quiescence/activation cycles. Due to their location, the isolation and experimental investigation of these cells is performed postmortem. Here, we describe in detail "brain milking", a method for the isolation of NSCs and OPCs, amongst other cells, from live animals. This is a two-step protocol designed for use in rodents and tested in rats. First, cells are "released" from the tissue via stereotaxic intracerebroventricular (i.c.v.) injection of a "release cocktail". The main components are neuraminidase, which targets ependymal cells and induces ventricular wall denudation, an integrin-β1-blocking antibody, and fibroblast growth factor-2. At a second "collection" step, liquid biopsies of cerebrospinal fluid are performed from the cisterna magna, in anesthetized rats without the need of an incision.

Results presented here show that isolated cells retain their endogenous profile and that NSCs of the SEZ preserve their quiescence. The denudation of the ependymal layer is restricted to the anatomical level of injection and the protocol (release and collection) is tolerated well  by the animals. This novel approach paves the way for performing longitudinal studies of endogenous neurogenesis and gliogenesis in experimental animals.

Introduction

Tissue-specific stem cells are partially committed cells that can give rise to all cell populations that constitute the respective tissues. Apart from being multipotent, they are self-renewing cells and crucial for maintaining the homeostasis and the regenerative capacity of tissues1. Some tissue-specific stem cells remain in an active, strongly proliferative state, such as intestinal or hematopoietic stem cells. Others, such as brain stem cells, remain largely quiescent or dormant2. In the adult brain, neural stem cells (NSCs) can be found in specialized areas, often called niches. Two such well described areas exist in....

Protocol

Animal breeding, maintenance, and experimental procedures were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986, authorized by the Home Office, and with the Presidential Decree 56/2013 of the Hellenic Republic, scrutinized by the Animal Welfare and Ethical Review Bodies of the Universities of Cambridge and Patras, as well as approved and scrutinized by the local Prefectural Animal Care and Use Committee (Protocol number: 5675/39/18-01-2021). Male and female Sprague-Dawley, Wistar, and Long-Eva.......

Representative Results

Release and collection of NSCs
NSCs of the SEZ are separated from the CSF only by the monolayer of ependymal cells, albeit they remain in direct contact with the ventricular content via intercalating mono-ciliated processes8,9. Neuraminidase acts specifically on ependymal cells via cleavage of sialic acid residues and can induce denudation of the ventricular wall. This leads to neuroblast clustering on the surface of the v.......

Discussion

Stem and progenitor cells are relatively sparse in mammalian brain tissue. In addition, NSCs are located in areas inaccessible for easy and safe biopsies (ventricular walls, hippocampus). Therefore, the only way to work experimentally with such cells, so far, has been their postmortem isolation. A method allowing the single or repeated collection of NSCs and OPCs from live rats, named milking, is described here step by step. The method is based on two key features: i) NSCs or OPCs are separated by the ependymal cell mono.......

Acknowledgements

This work was supported by an Action Medical Research (UK) grant (GN2291) to R.J.M.F. and I.K. The research work was also partly supported (animal costs and support to D.D) by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (Project Number: 3395).

....

Materials

NameCompanyCatalog NumberComments
Release cocktail
β1-integrin-blocking antibodyBD Biosciences#555002purified NA/LE Hamster Anti-Rat CD29 Clone Ha2/5, 1 mg/mL. Any abntibody with blocking activity should be appropriate.
Neuraminidase from Clostridium perfringens (Clostridium welchii)Sigma-Aldrich#N2876Neuraminidases fromother sources (e.g., from Vibrio cholerae) have not been tested.
Recombinant Human FGF-basic (154 a.a.)Peprotech#100-18Bkept as a 1 μg/μL stock, diluted in sterile water at -20 °C
Surgical procedures
10 µL SyringeHamilton#80330Model 701 RN, Small Removable Needle, 26s gauge, 2 in., point style 2
BD Micro-fine 1 mL insulin syringesBD biosciences04085-0029 G x 12.7 mm
BETADINE CUT.SOL 10% FLx30MLLAVIPHARM-CASTALIASKU: 5201048131168
BupaqRICHTERPHARMA1021854AF10 mL (buprenophine 0.3 mg/mL)
Digital New Standard Stereotaxic, Rat and MouseStoelting51500D
Homeothermic Monitoring SystemHarvard Apparatus55-7020
ISOFLURIN 1,000 mg/g inhalation vapour, liquidVetpharma Animal Health32509/4031
KetamidorRICHTER PHARMASKU: 9004114002531Ketamine 100 mg/mL
Nylon suture, EthilonEthiconD9635Clear , size 5-0
Rechargeable Cordless Surgical TrimmersStoeltingItem:51472
Scalpel blades, sterileSwann MortonAW050
Scopettes Jr.  8-inch SwabsBirchwood Laboratories34-7021-12P
Stereotaxic High Speed DrillForedom1474w/o1464
Stoelting’s Stereotaxic Instrument KitStoeltingItem: 52189
Xylan 2%Chanelle Pharmaceuticals13764/03/19-5-2004Xylazine, 25 mL
Tissue and cells handling and immunostainings
96-well plates appropriate for microscopyGreiner#655866Screen star microplate
B27 supplementThermoFisher ScientificA1486701
Bovine Serum Albumin (BSA)MerckP06-1391100Fraction V, heat shock
CitrateMerck71497Sodium citrate monobasic
CryostatLeicaCM1510S
DAPIMerck, Calbiochem28718-90-3Nuclear staining, Dilution: 1/1,000
DMEMThermoFisher Scientific11995065High glucose, pyruvate
donkey anti-goatBiotium20016 or 20106 or 20048Dilution: 1/1,000
donkey anti-mouseBiotium20014 or 20105 or 20046Dilution: 1/1,000
donkey anti-rabbitBiotium20015 or 20098 or 20047Dilution: 1/1,000
EGFPeprotech315-09
FGF-2 (or bFGF)Peprotech100-18B
goat anti-GFAPAbcamab53554Dilution: 1/500
goat anti-SOX2Santa Cruz Biotecnologysc-17320Dilution: 1/200
mouse anti-ID3Santa Cruz Biotecnologysc-56712Dilution: 1/200
mouse anti-S100βSigmaS2532Dilution: 1/200
MowiolMerck, Calbiochem475904Mounting medium
N2 supplementThermoFisher Scientific17502048
ParafolmadehydeMerck158127
Poly-D-LysineMerck, MilliporeA-003-ESolution, 1.0 mg/mL
rabbit anti-Doublecortin (DCX)Abcamab18723Dilution: 1/500
rabbit anti-PDGFRαAbcamab51875Dilution: 1/200
rabbit anti-β- cateninAbcamab16051Dilution: 1/500
Triton X-100MerckX100
Microscopy and image analysis
Confocal microscopeLeicaSP6 and SP8
Image analysisNIH, USAImageJ
Image analysisLeicaLasX

References

  1. Visvader, J. E., Clevers, H. Tissue-specific designs of stem cell hierarchies. Nature Cell Biology. 18 (4), 349-355 (2016).
  2. Dimitrakopoulos, D., Kakogiannis, D., Kazanis, I. Heterogeneity of quiescent and active neural stem c....

Explore More Articles

Neural Stem CellsOligodendrocyte Progenitor CellsBrain MilkingLive RatsRegenerationQuiescenceActivationDifferentiationNeurogenesisGliogenesisSubependymal ZoneVentricular subventricular ZoneCentral Nervous System

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved