サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol presents a unique way of generating central nervous system cell cultures from embryonic day 17 mouse brains for neuro(immuno)logy research. This model can be analyzed using various experimental techniques, including RT-qPCR, microscopy, ELISA, and flow cytometry.

Abstract

Models of the central nervous system (CNS) must recapitulate the complex network of interconnected cells found in vivo. The CNS consists primarily of neurons, astrocytes, oligodendrocytes, and microglia. Due to increasing efforts to replace and reduce animal use, a variety of in vitro cell culture systems have been developed to explore innate cell properties, which allow the development of therapeutics for CNS infections and pathologies. Whilst certain research questions can be addressed by human-based cell culture systems, such as (induced) pluripotent stem cells, working with human cells has its own limitations with regard to availability, costs, and ethics. Here, we describe a unique protocol for isolating and culturing cells from embryonic mouse brains. The resulting mixed neural cell cultures mimic several cell populations and interactions found in the brain in vivo. Compared to current equivalent methods, this protocol more closely mimics the characteristics of the brain and also garners more cells, thus allowing for more experimental conditions to be investigated from one pregnant mouse. Further, the protocol is relatively easy and highly reproducible. These cultures have been optimized for use at various scales, including 96-well based high throughput screens, 24-well microscopy analysis, and 6-well cultures for flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. This culture method is a powerful tool to investigate infection and immunity within the context of some of the complexity of the CNS with the convenience of in vitro methods.

Introduction

Improving our understanding of the central nervous system (CNS) is critical to improve therapeutic options for many neuroinflammatory and neurodegenerative diseases. The CNS, a complex network of interconnected cells within the brain, spinal cord, and optic nerves, comprises neurons, oligodendrocytes, astrocytes, and their innate immune cells, the microglia1. An in vitro approach can often drastically reduce the number of mice required to perform meaningful research; however, the complex nature of the CNS makes it impossible to recapitulate the in vivo situation using cell lines. Mixed neural cell cultures provide an extremely....

Protocol

All animal experiments complied with local laws and guidelines for animal use, and were approved by the local Ethical Review Committee at the University of Glasgow. Animals were housed in specific pathogen-free conditions in accordance with the UK Animals Scientific Procedures Act 1986, under the auspices of a UK Home Office Project License. For this study, in-house bred adult C57BL/6J mice were used. The use of young females (8-12 weeks) is recommended due to the higher success rate of pregnancy; males can be reused for.......

Representative Results

Microscopy
Cultures grown on glass coverslips are ideal to analyze by microscopy. To visualize the development of the cultures, the coverslips were fixed in 4% paraformaldehyde (PFA) at multiple timepoints from DIV0 (once cells were attached) until DIV28. The cultures were stained for immunofluorescence imaging as previously described5 using three different staining combinations: NG2 (immature oligodendrocytes) and nestin (neuronal stem/progenitor cells) as developmental mar.......

Discussion

The CNS is a complex network that spans from the brain down to the spinal cord and consists of many cell types, predominantly neurons, oligodendrocytes, astrocytes, and microglia1. As each cell has an important role in maintaining homeostasis and generating appropriate responses to challenges in the CNS9,10,11, a culture system that contains all these cell types is a useful and versatile tool to investiga.......

Acknowledgements

We would like to thank members of the Edgar and Linington labs, particularly Prof. Chris Linington, Dr Diana Arseni, and Dr Katja Muecklisch, for their advice, helpful comments, and assistance with feeding the cultures while we set up these cultures. Particular thanks go to Dr Muecklisch for providing the starting points for the Cell Profiler pipelines. This work was supported by the MS Society (grant 122) and the Yuri and Lorna Chernajovsky foundation to MP; University of Glasgow funding to JC and MP; and Wellcome Trust (217093/Z/19/Z) and Medical Research Council (MRV0109721) to GJG.

....

Materials

NameCompanyCatalog NumberComments
10x TrypsinSigmaT4549-100MLTo digest tissue
140 mm TC DishFisher11339283Put 8 35 mm dishes per 1 140 mm dish
15 mL FalconSarstedt62554502To collect cells into pellet for resuspension in plating media
18 G needleHenke Sass Wolf4710012040For trituration of sample
21 G needleBD304432For trituration of sample
23 G needleHenke Sass Wolf4710006030For trituration of sample
35 mm TC DishCorning430165Plate out 3 PLL coated coverslips per 1 35 mm dish
5 mL syringeFisher15869152For trituration of sample
6 well plateCorning3516To plate out cells for RT-qPCR, and flow cytometry
7 mL BijouxFisherDIS080010RTo put brains intp
96 well plateCorning3596To plate out cells for high-throughput testing
ACSA-2 Antibody, anti-mouse, PEMiltenyi130-123-284For flow cytometry staining of astrocytes
Angled forcepsDumont0108-5/45-POFor dissection
BiotinSigmaB4501For DM+/-
Boric AcidSigmaB6768-500GFor boric acid buffer
Brilliant Violet 421 anti-mouse CD24 Antibody, clone M1-69Biolegend101825For flow cytometry staining of neurons and astrocytes
Brilliant Violet 605 anti-mouse CD45 Antibody, clone 30-F11Biolegend103139For flow cytometry staining of microglia
Brilliant Violet 785 anti-mouse/human CD11b Antibody, clone M1/70Biolegend101243For flow cytometry staining of microglia
BSA Fraction VSigmaA3059-10GFor SD Inhibitor
CNPAbcamAB6319Mature oligodendrocytes
CoverslipVWR631-0149To plate out cells for microscopy
Dissection ScissorsSigmaS3146-1EAFor dissection
DMEM High glucose, sodium pyruvate, L-GlutamineGibco21969-035For DM+/-, and for plating media
DNase IThermofisher18047019For SD Inhibitor, can use this or the other Dnase from sigma
DNase ISigmaD4263For SD Inhibitor, can use this or the other Dnase from thermofisher
eBioscience Fixable Viability Dye eFluor 780Thermofisher65-0865-14Live / Dead stain
Fine forcepsDumont0102-SS135-POFor dissection
GFAPInvitrogen13-0300Astrocytes
HBSS w Ca MgSigmaH9269-500MLFor plating media
HBSS w/o Ca MgSigmaH9394-500MLFor brains to be added to
Horse SerumGibco26050-070For plating media
HydrocortisoneSigmaH0396For DM+/-
Iba1Alpha-Laboratories019-1971Microglia
InsulinSigmaI1882For DM+
Leibovitz L-15GIbco11415-049For SD Inhibitor
MBPBio-RadMCA409SMyelin
Mouse CCL5/RANTES DuoSet ELISA KitBioTechneDY478-05ELISA kit for quantifying concentration of CCL5 in supernatants of 96 well plate
N1 media supplementSigmaN6530-5MLFor DM+/-
NestinMerckMAB353Neuronal stem/progenitor cells
NeuNThermofisherPA578499Neuronal cell body
NG2SigmaAB5320Immature oligodendrocytes
O4 Antibody, anti-human/mouse/rat, APCMiltenyi130-119-155For flow cytometry staining of oligodendrocytes
Pen/StrepSigmaP0781-100MLFor DM+/-, and for plating media
Poly-L-LysinehydrobromideSigmaP1274For Boric acid / poly-L-lysine solution to coat coverslips
SMI31BioLegend801601Axons
Sodium TetraborateSigma221732-100GFor boric acid buffer
TrizolThermofisher15596026For lysing cells for RT-qPCR
Trypsin inhibitor from soybeanSigmaT9003-100MGFor SD Inhibitor

References

  1. Kovacs, G. G. Cellular reactions of the central nervous system. Handbook of Clinical Neurology. 145, 13-23 (2018).
  2. Russell, W. M. S., Burch, R. L. . The Principles of Humane Experimental Techniques. 1, (1959).
  3. Hubrecht, R. C., Carter, E.

Explore More Articles

Mixed Cell CultureEmbryonic Mouse BrainCentral Nervous SystemInnate ImmunityViral InfectionInterferon BetaThree RsAnimal WelfareCell based AssaysPMLMultiple Sclerosis

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved