このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Multiplexed ion beam imaging (MIBI) is often used to image tissue microarrays and tiled, contiguous tissue areas, but current software for setting up these experiments is cumbersome. The tile/SED/array interface is an intuitive, interactive graphical tool developed to dramatically simplify and accelerate MIBI run setup.
Multiplexed ion beam imaging (MIBI) is a next-generation mass spectrometry-based microscopy technique that generates 40+ plex images of protein expression in histologic tissues, enabling detailed dissection of cellular phenotypes and histoarchitectural organization. A key bottleneck in operation occurs when users select the physical locations on the tissue for imaging. As the scale and complexity of MIBI experiments have increased, the manufacturer-provided interface and third-party tools have become increasingly unwieldy for imaging large tissue microarrays and tiled tissue areas. Thus, a web-based, interactive, what-you-see-is-what-you-get (WYSIWYG) graphical interface layer - the tile/SED/array Interface (TSAI) - was developed for users to set imaging locations using familiar and intuitive mouse gestures such as drag-and-drop, click-and-drag, and polygon drawing. Written according to web standards already built into modern web browsers, it requires no installation of external programs, extensions, or compilers. Of interest to the hundreds of current MIBI users, this interface dramatically simplifies and accelerates the setup of large, complex MIBI runs.
Multiplexed ion beam imaging (MIBI) is a technique to image 40+ proteins simultaneously on histologic tissue sections at up to 250 nm resolution1,2,3. After a histologic tissue section is stained using antibodies tagged with isotopically pure elemental metals, the MIBI instrument performs secondary ion mass spectrometry to simultaneously quantify all the isotopes - and thus expression of all 40+ antigens - at individual spots on the tissue. Performed across grids of millions of spots, the resulting 40+ plex images of protein expression enable the delineation of cell boundarie....
1. Loading of TSAI
TSAI provides two methods for setting up FOVs (Figure 2). One uses only the optical image (Figure 2, TSAI, left branch), similar to other existing methods. The second method - generating a tiled SED image - is unique to TSAI (Figure 2, TSAI, right branch). TSAI draws FOVs accurately onto this image, eliminating the need to spend hours nudging FOVs into place in the manufacturer interface SED mode. However, the correction coefficient.......
Multiplexed ion beam imaging (MIBI) is a powerful technique for dissecting detailed cellular phenotypes and tissue histoarchitecture5,6,7,8,9,10,11. Computational efforts around MIBI have largely focused on processing the data after imaging, but little has been done to improve the instrument.......
H. Piyadasa was supported by the Canadian Institutes of Health Research (CIHR) Fellowship (MFE-176490). B. Oberlton was supported by the National Science Foundation (NSF) Fellowship (2020298220). A. Tsai was supported by a Damon Runyon Cancer Research Foundation (DRCRF) Fellowship (DRG-118-16), the Stanford Department of Pathology, the Annelies Gramberg Fund, and NIH 1U54HL165445-01. Additional acknowledgments go to Dr. Avery Lam, Dr. Davide Franchina, and Mako Goldston for helping to test and debug the program.
....Name | Company | Catalog Number | Comments |
MIBI computer | Ionpath | ||
MIBIcontrol (software) | Ionpath | ||
MIBIscope | Ionpath | Multiplexed Ion Beam Imaging (MIBI) microscope | |
MIBIslide | Ionpath | 567001 | Conductive slide for MIBI |
Tile/SED/Array Interface (TSAI) (software) | https://github.com/ag-tsai/mibi_tsai/ |
Explore More Articles
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved