このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
This protocol provides an experimental framework to document the physical impact of the cytoskeleton on nuclear shape and the internal membrane-less organelles in the mouse oocyte system. The framework can be adapted for use in other cell types and contexts.
A major challenge in understanding the causes of female infertility is to elucidate mechanisms governing the development of female germ cells, named oocytes. Their development is marked by cell growth and subsequent divisions, two critical phases that prepare the oocyte for fusion with sperm to initiate embryogenesis. During growth, oocytes reorganize their cytoplasm to position the nucleus at the cell center, an event predictive of successful oocyte development in mice and humans and, thus, their embryogenic potential. In mouse oocytes, this cytoplasmic reorganization was shown to be driven by the cytoskeleton, the activity of which generates mechanical forces that agitate, reposition, and penetrate the nucleus. Consequently, this cytoplasmic-to-nucleoplasmic force transmission tunes the dynamics of nuclear RNA-processing organelles known as biomolecular condensates. This protocol provides an experimental framework to document, with high temporal resolution, the impact of the cytoskeleton on the nucleus across spatial scales in mouse oocytes. It details the imaging and image analysis steps and tools necessary to evaluate i) cytoskeletal activity in the oocyte cytoplasm, ii) cytoskeleton-based agitation of the oocyte nucleus, and iii) its effects on biomolecular condensate dynamics in the oocyte nucleoplasm. Beyond oocyte biology, the methods elaborated here can be adapted for use in somatic cells to similarly address cytoskeleton-based tuning of nuclear dynamics across scales.
Nuclear positioning is essential for multiple cellular and developmental functions1,2,3,4,5. Mammalian female germ cells named oocytes remodel their cytoplasm to position the nucleus at the cell center despite undergoing an asymmetric division in size, which relies on subsequent chromosome off-centering6 (Figure 1). This centering of the nucleus predicts successful oocyte development in mice and humans7,
All animal experiments were performed in accordance with the guidelines of the European Community and were approved by the French Ministry of Agriculture (authorization No. 75-1170) and by the Direction Générale de la Recherche et de l'Innovation (DGRI; GMO agreement number DUO-5291). Mice were housed in the animal facility on a 12 h light/dark cycle, with an ambient temperature of 22-24 °C and humidity of 40%-50%. Mice used here include female OF1 (Oncins France 1, 8 to 12 weeks old) and female C57BL/.......
Image panels in Figure 3 show examples of a typical fully grown oocyte (Figure 3A), the nucleoplasm in a fully grown oocyte expressing YFP-Rango (Figure 3B), the nucleoplasm in a fully grown oocyte expressing a correct (left panel; Figure 3C) or an excessive (right panel; Figure 3C) dose of SRSF2-GFP cRNA, and an immunostaining of nuclear speckles in a fully grown oocyte us.......
Key steps in this protocol include proper microinjection of oocytes without affecting their survival or normal function9,10,11, as well as microinjecting predefined amounts of cRNA that would allow correct visualization of relevant structures, like nuclear speckles.
Establishing the link between cytoplasmic and (intra)-nuclear dynamics is essential when studying how the cytoskeleton agitates the nucle.......
A.A.J. and M.A. co-wrote the manuscript and all co-authors commented on the manuscript. M. A. is supported by CNRS and "Projet Fondation ARC" (PJA2022070005322).A.A.J. is supported by Fondation des Treilles, Fonds Saint-Michel, and Fondation du Collège de France.
....Name | Company | Catalog Number | Comments |
Bovine Serum Albumin (BSA) | Sigma | A3311 | |
CSU-X1-M1 spinning disk | Yokogawa | ||
DMI6000B microscope | Leica | ||
Femtojet microinjector | Eppendorf | ||
Fiji | |||
Filter wheel | Sutter Instruments Roper Scientific | ||
Fluorodish | World Precision Instruments | FD35-100 | |
Metamorph software | Universal Imaging, | version 7.7.9.0 | |
Mineral oil | Sigma Aldrich | M8410-1L | |
NanoDrop 2000 | Thermo Scientific | ||
OF1 and C57BL/6 mice | Charles River Laboratories | ||
Poly(A) Tailing kit | Thermo Fisher | AM1350 | |
Retiga 3 CCD camera | QImaging | ||
RNAeasy kit | Qiagen | 74104 | |
SC35 antibody | Abcam | ab11826 | Nuclear speckle antibody; mouse IgG1 anti-SRSF2/SC35 (1:400) |
SRSF2-GFP plasmid | OriGene Technologies | MG202528 | NM_011358 |
Stripper Micropipette | XLAB Solutions | specialized for oocyte collection | |
T3 mMessage mMachine | Thermo Fisher | AM1384 | |
T7 mMessage mMachine | Thermo Fisher | AM13344 | |
Thermostatic chamber | Life Imaging Service | ||
Windows Excel | Windows |
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved