このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
* These authors contributed equally
This protocol offers a systematic framework for the establishment of ovarian cancer organoids from different disease stages and addresses the challenges of patient-specific variability to increase yield and enable robust long-term expansion for subsequent applications. It includes detailed steps for tissue processing, seeding, adjusting media requirements, and immunofluorescence staining.
While the establishment of an ovarian cancer biobank from patient-derived organoids along with their clinical background information promises advances in research and patient care, standardization remains a challenge due to the heterogeneity of this lethal malignancy, combined with the inherent complexity of organoid technology. This adaptable protocol provides a systematic framework to realize the full potential of ovarian cancer organoids considering a patient-specific variability of progenitors. By implementing a structured experimental workflow to select optimal culture conditions and seeding methods, with parallel testing of direct 3D seeding versus a 2D/3D route, we obtain, in most cases, robust long-term expanding lines suitable for a broad range of downstream applications.
Notably, the protocol has been tested and proven efficient in a great number of cases (N = 120) of highly heterogeneous starting material, including high-grade and low-grade ovarian cancer and stages of the disease with primary debulking, recurrent disease, and post-neoadjuvant surgical specimens. Within a low Wnt, high BMP exogenous signaling environment, we observed progenitors being differently susceptible to the activation of the Heregulin 1 ß (HERß-1)-pathway, with HERß-1 promoting organoid formation in some while inhibiting it in others. For a subset of the patient's samples, optimal organoid formation and long-term growth necessitate the addition of fibroblast growth factor 10 and R-Spondin 1 to the medium.
Further, we highlight the critical steps of tissue digestion and progenitor isolation and point to examples where brief cultivation in 2D on plastic is beneficial for subsequent organoid formation in the Basement Membrane Extract type 2 matrix. Overall, optimal biobanking requires systematic testing of all main conditions in parallel to identify an adequate growth environment for individual lines. The protocol also describes the handling procedure for efficient embedding, sectioning, and staining to obtain high-resolution images of organoids, which is required for comprehensive phenotyping.
Clinical management of patients with epithelial ovarian cancer remains challenging due to its heterogeneous clinical presentation at advanced stages and high recurrence rates1. Improving our understanding of ovarian cancer development and biological behavior requires research approaches that address the patient-specific variability during the course of the disease, treatment response, and histopathological as well as molecular features2.
Biobanking, characterized by the systematic collection and long-term preservation of tumor samples derived from ovarian cancer patients along with their clini....
Tumor tissue specimens from ovarian cancer surgeries were collected and patient-derived organoids were generated in compliance with the Ethics Committee of LMU University (17-471), adhering to the existing applicable EU, national, and local regulations. Each patient involved in the study has consented in written form. When working with fresh tissue samples, Biosafety Level 2 safety permission and Laminar Flow cabinets are required. Given the potentially infectious nature of the tissue samples, which cannot be ruled out d.......
After initial tissue dissociation, filtration, and counting, cells are seeded in parallel directly in 3D format, as explained above, as well as the suspension in the flask for brief 2D expansion. In some cases, the transient 2D expansion positively influences the organoid formation, and the long-term line is successfully established via this route while comparative parallel 3D seeding can result in growth arrest (Figure 1). For each donor tissue that is processed, the cells are tested accord.......
The designed protocol addresses previous challenges of ovarian cancer organoid biobanking with regard to organoid formation and long-term passage potential and ensures the generation of fully expandable lines from the majority of solid tumor deposits. The surgical collection process of tumor samples to be used for organoid generation significantly impacts yield and expansion potential. Tumor tissue samples can be obtained during various procedures, including multi-visceral surgery, diagnostic laparoscopy, or biopsy. The .......
The study is funded by the German Cancer Research Center DKTK, Partner site Munich, a partnership between DKFZ and University Hospital LMU Munich. The study is also supported by the German Cancer Aid grant (#70113426 and #70113433). Paraffin embedding of tissue and organoids has been performed at the Core facility of the Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich. Confocal Imaging has been performed at the Core facility Bioimaging at the Biomedical Center (BMC). The authors want to thank Simone Hofmann, Maria Fischer, Cornelia Herbst, Sabine Fink, and Martina Rahmeh, for technical help.
....Name | Company | Catalog Number | Comments |
100 Sterican 26 G | Braun, Melsungen, Germany | 4657683 | |
100 Sterican 27 G | Braun, Melsungen, Germany | 4657705 | |
293T HA Rspo1-Fc | R&D systems, Minneapolis, USA | 3710-001-01 | Alternative: R-Spondin1 expressing Cell line, Sigma-Aldrich, SC111 |
A-83-01 (TGF-b RI Kinase inhibitor IV) | Merck, Darmstadt, Germany | 616454 | |
Advanced DMEM/F-12 Medium | Gibco, Thermo Scientific, Waltham, USA | 12634028 | |
Anti-p53 antibody (DO1) | Santa Cruz Biotechnology, Texas, USA | sc-126 | |
Anti-PAX8 antibody | Proteintech, Manchester, UK | 10336-1-AP | |
B-27 Supplement (50x) | Gibco, Thermo Scientific, Waltham, USA | 17504-044 | |
Bottle-top vacuum filter 0.2 µm | Corning, Berlin, Germany | 430049 | |
CELLSTAR cell culture flask, 175 cm2 | Greiner Bio-one, Kremsmünster, Austria | 661175 | |
CELLSTAR cell culture flask, 25 cm2 | Greiner Bio-one, Kremsmünster, Austria | 690160 | |
CELLSTAR cell culture flask, 75 cm2 | Greiner Bio-one, Kremsmünster, Austria | 658175 | |
Collagenase I | Thermo Scientific, Waltham, USA | 17018029 | |
Costar 48-well Clear TC-treated | Corning, Berlin, Germany | 3548 | |
Cryo SFM | PromoCell – Human Centered Science, Heidelberg, Germany | C-29912 | |
Cultrex Reduced Growth Factor Basement Membrane Extract, Type 2, Pathclear | R&D systems, Minneapolis, USA | 3533-005-02 | Alternative: Matrigel, Growth Factor Reduced Basement membrane matrix Corning, 356231 |
Cy5 AffiniPure Donkey Anti-Mouse IgG | Jackson Immuno | 715-175-151 | |
DAKO Citrate Buffer, pH 6.0, 10x Antigen Retriever | Sigma-Aldrich, Merck, Darmstadt, Germany | C9999-1000ML | |
DAPI | Thermo Scientific, Waltham, USA | 62248 | |
Donkey anti rabbit Alexa Fluor Plus 555 | Thermo Scientific, Waltham, USA | A32794 | |
Donkey anti-Goat IgG Alexa Fluor Plus 488 | Thermo Scientific, Waltham, USA | A32814 | |
Dulbecco´s Phosphate-Buffered Saline | Gibco, Thermo Scientific, Waltham, USA | 14190-094 | |
Epredia Richard-Allan Scientific HistoGel | Thermo Scientific, Waltham, USA | Epredia HG-4000-012 | |
Falcon 24-well Polystyrene | Corning, Berlin, Germany | 351447 | |
Feather scalpel | Pfm medical, Cologne, Germany | 200130010 | |
Fetal Bovine Serum | Gibco, Thermo Scientific, Waltham, USA | 10270106 | |
Formalin 37% acid free, stabilized | Morphisto, Offenbach am Main, Germany | 1019205000 | |
GlutaMAX | Gibco, Thermo Scientific, Waltham, USA | 35050038 | |
HEPES (1 M) | Gibco, Thermo Scientific, Waltham, USA | 156630080 | |
Human EpCAM/TROP-1 Antibody | R&D systems, Minneapolis, USA | AF960 | |
Human FGF10 | Peprotech, NJ, USA | 100-26 | |
Human recombinant BMP2 | Gibco, Thermo Scientific, Waltham, USA | PHC7146 | |
Human recombinant EGF | Gibco, Thermo Scientific, Waltham, USA | PHG0311L | |
Human recombinant Heregulin beta-1 | Peprotech, NJ, USA | 100-03 | |
LAS X core Software | Leica Microsystems | https://webshare.leica-microsystems.com/latest/core/widefield/ | |
Leica TCS SP8 X White Light Laser Confocal Microscope | Leica Microsystems | ||
N-2 Supplement (100x) | Gibco, Thermo Scientific, Waltham, USA | 17502-048 | |
Nicotinamide | Sigma-Aldrich, Merck, Darmstadt, Germany | N0636 | |
Omnifix 1 mL | Braun, Melsungen, Germany | 3570519 | |
Paraffin | |||
Parafilm | Omnilab, Munich, Germany | 5170002 | |
Paraformaldehyd | Morphisto, Offenbach am Main, Germany | 1176201000 | |
Pen Strep | Gibco, Thermo Scientific, Waltham, USA | 15140-122 | |
Penicillin-Streptomycin (10,000 U/mL) | Sigma-Aldrich, Merck, Darmstadt, Germany | P4333-100 | |
PluriStrainer 400 µm | PluriSelect, Leipzig, Germany | 43-50400-01 | |
Primocin | InvivoGen, Toulouse, France | ant-pm-05 | |
Red Blood Cell Lysing Buffer | Sigma-Aldrich, Merck, Darmstadt, Germany | 11814389001 | |
Roticlear | Carl Roth, Karlsruhe, Germany | A538.5 | |
Surgipath Paraplast | Leica, Wetzlar, Germany | 39602012 | |
Thermo Scientific Nunc Cryovials | Thermo Scientific, Waltham, USA | 375418PK | |
Triton X-100 | Sigma-Aldrich, Merck, Darmstadt, Germany | T8787 | |
Trypan Blue Stain | Sigma-Aldrich, Merck, Darmstadt, Germany | T8154 | |
TrypLE Express Enzyme | Gibco, Thermo Scientific, Waltham, USA | 12604-013 | |
Tween-20 | PanReac AppliChem, Darmstadt, Germany | A4974-0100 | |
Y-27632 | TOCRIS biotechne, Wiesbaden, Germany | 1254 | |
Zeocin | Invitrogen, Thermo Scientific, Waltham, USA | R25001 |
Explore More Articles
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved