Flow cytometric analysis of Bimolecular Fluorescence Complementation provides a high throughput quantitative method to study protein-protein interaction. This methodology can be applied to mapping protein binding sites and for screening factors that regulate protein-protein interaction.
The genetic reporter assay is a well-established and powerful tool for dissecting the relationship between DNA sequences and their gene regulatory activities. Coupling candidate regulatory elements to reporter genes that carry identifying sequence tags enables massive parallelization of these assays.
We describe here a protocol for the generation of iCMs using retrovirus-mediated delivery of Gata4, Tbx5 and Mef2c in a polycistronic construct. This protocol yields a relatively homogeneous population of reprogrammed cells with improved efficiency and quality and is valuable for future studies of iCM reprogramming.
The goal of this study was to formulate technologies that allow for successful gene transduction in primary natural killer (NK) cells. The dextran-mediated lentiviral transduction of human or mouse primary NK cells results in higher gene expression efficiencies. This method of gene transduction will vastly improve NK cell genetic manipulation.
Toll-like receptor (TLR) signaling plays an important role in the pathophysiology of many human inflammatory diseases, and regulating TLR responses by bioactive nanoparticles is anticipated to be beneficial in many inflammatory conditions. THP-1 cell-based reporter cells provide a versatile and robust screening platform for identifying novel inhibitors of TLR signaling.
We introduce a murine orthotopic breast cancer model and radical mastectomy model with bioluminescence technology to quantify the tumor burden to mimic human breast cancer progression.
We show a method for necropsy and dissection of mouse prostate cancer models, focusing on prostate tumor dissection. A step-by-step protocol for generation of mouse prostate tumor organoids is also presented.
Here, we developed a novel multilayered modified strategy for liquid-like bioinks (gelatin methacryloyl with low viscosity) to prevent the sedimentation of encapsulated cells.
Here, we provide a microfluidic chip and an automatically controlled, highly efficient circulation microfluidic system that recapitulates the initial microenvironment of neovascularization, allowing endothelial cells (ECs) to be stimulated by high luminal shear stress, physiological level of transendothelial flow, and various vascular endothelial growth factor (VEGF) distribution simultaneously.
Here, we describe a murine xenograft model that functionally resembles an Ommaya reservoir in patients. We developed the Murine Ommaya to study novel therapeutics for the universally fatal leptomeningeal disease.
The protocol presents the overall in-lab procedures required in pre-implantation genetic testing for aneuploidy on a semiconductor-based next-generation sequencing platform. Here we present the detailed steps of whole genome amplification, DNA fragment selection, library construction, template preparation, and sequencing working flow with representative results.
This protocol describes the process of the generation and characterization of mouse urothelial organoids harboring deletions in genes of interest. The methods include harvesting mouse urothelial cells, ex vivo transduction with adenovirus driving Cre expression with a CMV promoter, and in vitro as well as in vivo characterization.
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유