This video demonstrates the use of in vivo bioluminescence imaging to study immune responses after implantation of Engineered Heart Tissue (EHT) in rats.
Förster resonance energy transfer (FRET) microscopy is a powerful technique for real-time monitoring of signaling events in live cells using various biosensors as reporters. Here we describe how to build a customized epifluorescence FRET imaging system from commercially available components and how to use it for FRET experiments.
This protocol details a method to isolate antigen presenting cells from human thymus via different steps of enzymatic digestion of the tissue followed by density centrifugation of the single cell suspension and finally magnetic and/or FACS sorting of the cell populations of interest.
Effector translocation into host cells via a type III secretion system is a common virulence strategy among gram-negative bacteria. A beta-lactamase effector fusion based assay for quantitative analysis of translocation was applied. In Yersinia infected cells, conversion of a FRET reporter by the beta-lactamase is monitored using laser scanning microscopy.
The goal of this protocol is to assess specificity of anticancer drugs in vitro using mixed cultures containing both tumor and non-tumor cells.
Here, we show the generation of human engineered heart tissue from induced pluripotent stem cells (hiPSC)-derived cardiomyocytes. We present a method to analyze contraction force and exemplary alteration of contraction pattern by the hERG channel inhibitor E-4031. This method shows high level of robustness and suitability for cardiac drug screening.
Lipid droplets are important organelles for the replication of several pathogens, including the Hepatitis C Virus (HCV). We describe a method to isolate lipid droplets for quantitative mass spectrometry of associated proteins; it can be used under a variety of conditions, such as virus infection, environmental stress, or drug treatment.
This protocol is to recover and prepare rare target cells from a mixture with non-target background cells for molecular genetic characterization at the single-cell level. DNA quality is equal to non-treated single cells and allows for single-cell application (both screening based and targeted analysis).
We present a protocol of creating right ventricular dysfunction in a pig model by inducing ARDS. We demonstrate invasive monitoring of left and right ventricular cardiac output using flow probes around the aorta and the pulmonary artery, as well as blood pressure measurements in the aorta and pulmonary artery.
Here, we present a protocol for the modulation of the intracardiac autonomic nervous system and the assessment of its influence on basic electrophysiology, arrhythmogenesis, and cAMP dynamics using an ex vivo Langendorff setup.
Here we present a protocol for murine in vivo labeling of glomerular cell surface proteins with biotin. This protocol contains information on how to perfuse mouse kidneys, isolate glomeruli, and perform endogenous immunoprecipitation of the protein of interest.
We present a genome engineering workflow for the generation of new in vitro models for HIV-1 infection that recapitulate proviral integration at selected genomic sites. Targeting of HIV-derived reporters is facilitated by CRISPR-Cas9-mediated, site-specific genome manipulation. Detailed protocols for single-cell clone generation, screening, and correct targeting verification are provided.
An advanced microscope that permit fast and high-resolution imaging of both, the isolated plasma membrane and the surrounding intracellular volume, will be presented. The integration of spinning disk and total internal reflection fluorescence microscopy in one setup allows live imaging experiments at high acquisition rates up to 3.5 s per image stack.
Here we present a protocol for the induction of left ventricular cryoinjury followed by the implantation of a cardiac muscle patch, derived from human iPS-cell cardiomyocytes in a guinea pig model.
This protocol provides detailed methods describing the fabrication and implementation of a magnetics-based afterload tuning platform for engineered heart tissues.
Spinal cord microcirculation plays a pivotal role in spinal cord injury. Most methods do not allow real-time assessment of spinal cord microcirculation, which is essential for the development of microcirculation-targeted therapies. Here, we propose a protocol using Laser-Doppler-Flow Needle probes in a large animal model of ischemia/reperfusion.
This protocol focuses on chromatin preparation from snap frozen tissues and it is suitable for Crosslinking Chromatin Immunoprecipitation (X-ChIP) followed by either quantitative PCR analysis (X-ChIP-qPCR) or next generation sequencing approaches (X-ChIP-seq).
For the observation of murine neonatal bile duct disorders, an intact bile duct and efficient preparation are required. Therefore, a new approach for isolating the entire extrahepatic bile duct system in murine neonates was successfully developed while maintaining the integrity of the bile duct.
JoVE 소개
Copyright © 2025 MyJoVE Corporation. 판권 소유