JoVE Logo

로그인

13.7 : 지수 함수는 빠르게 상승하고 감소하는 파형을 특성화함에 있어 중요한 역할을 합니다. 이 연속 시간 지수 함수는 상수 a 및 A를 갖는 지수 항을 사용하여 정의됩니다. 두 상수가 모두 실수인 경우 함수는 로 표현되며 지수적 증가 또는 감소를 보여주기 위해 그래프로 표현할 수 있습니다. 상수 a가 순전히 허수인 경우 결과는 복소수 지수이며 로 표현됩니다. 여기서 j는 허수 단위이고 ω_0는 각주파수입니다. 이 함수는 크기가 1인 경우 주기적입니다. 연속 시간 사인파 신호는 주파수와 시간 주기로 설명할 수 있습니다. 오일러 공식을 사용하면 사인파 신호를 동일한 기본 주기를 갖는 주기적 복소 지수로 표현할 수 있습니다. 따라서 사인파 신호는 다음과 같이 표현됩니다. 복소 지수를 사용하여 다음과 같이 다시 쓸 수 있습니다. 마찬가지로 복소 지수 함수는 모두 동일한 기본 주기를 공유하는 사인파 신호로 표현할 수 있습니다. 예를 들어 두 복소 지수의 합은 단일 복소 지수와 단일 사인파의 곱으로 쓸 수 있으며, 예시는 다음과 같습니다. 사인파와 복소 지수 신호는 스프링을 통해 고정 지지대에 연결된 질량처럼 단순 조화 운동을 보이는 기계 시스템에서 에너지 보존을 설명하는 데 광범위하게 사용됩니다. 이러한 신호는 이러한 시스템에서 진동 작용과 공명 현상을 분석하는 기초를 제공합니다.

The exponential function is crucial for characterizing waveforms that rise and decay rapidly. This continuous-time exponential function is defined using exponential terms with constants α and A. When both constants are real, the function is represented as,

Equation1

and can be graphically depicted to show exponential growth or decay. When the constant α is purely imaginary, the result is a complex exponential, expressed as,

Equation2

where j is the imaginary unit and ω0 is the angular frequency. This function is periodic if it maintains a magnitude of unity.

A continuous-time sinusoidal signal can be described in terms of frequency and time period. Euler's relation allows the sinusoidal signal to be expressed as periodic complex exponentials with the same fundamental period. Thus, a sinusoidal signal is represented as,

Equation3

can be rewritten using complex exponentials as follows,

Equation4

Similarly, the complex exponential function can be expressed in terms of sinusoidal signals, all sharing the same fundamental period. For instance, the sum of two complex exponentials can be written as the product of a single complex exponential and a single sinusoid, exemplified by,

Equation5

​Both sinusoidal and complex exponential signals are extensively employed to describe energy conservation in mechanical systems, such as a mass connected to a stationary support via a spring, exhibiting simple harmonic motion. These signals provide a foundation for analyzing oscillatory behavior and resonance phenomena in such systems.

Tags

Exponential FunctionSinusoidal SignalContinuous timeComplex ExponentialPeriodic FunctionEuler s RelationAngular FrequencyEnergy ConservationMechanical SystemsHarmonic MotionOscillatory BehaviorResonance Phenomena

장에서 13:

article

Now Playing

13.7 : 지수 함수는 빠르게 상승하고 감소하는 파형을 특성화함에 있어 중요한 역할을 합니다. 이 연속 시간 지수 함수는 상수 a 및 A를 갖는 지수 항을 사용하여 정의됩니다. 두 상수가 모두 실수인 경우 함수는 로 표현되며 지수적 증가 또는 감소를 보여주기 위해 그래프로 표현할 수 있습니다. 상수 a가 순전히 허수인 경우 결과는 복소수 지수이며 로 표현됩니다. 여기서 j는 허수 단위이고 ω_0는 각주파수입니다. 이 함수는 크기가 1인 경우 주기적입니다. 연속 시간 사인파 신호는 주파수와 시간 주기로 설명할 수 있습니다. 오일러 공식을 사용하면 사인파 신호를 동일한 기본 주기를 갖는 주기적 복소 지수로 표현할 수 있습니다. 따라서 사인파 신호는 다음과 같이 표현됩니다. 복소 지수를 사용하여 다음과 같이 다시 쓸 수 있습니다. 마찬가지로 복소 지수 함수는 모두 동일한 기본 주기를 공유하는 사인파 신호로 표현할 수 있습니다. 예를 들어 두 복소 지수의 합은 단일 복소 지수와 단일 사인파의 곱으로 쓸 수 있으며, 예시는 다음과 같습니다. 사인파와 복소 지수 신호는 스프링을 통해 고정 지지대에 연결된 질량처럼 단순 조화 운동을 보이는 기계 시스템에서 에너지 보존을 설명하는 데 광범위하게 사용됩니다. 이러한 신호는 이러한 시스템에서 진동 작용과 공명 현상을 분석하는 기초를 제공합니다.

Introduction to Signals and Systems

213 Views

article

13.1 : 신호와 시스템

Introduction to Signals and Systems

597 Views

article

13.2 : 신호 분류

Introduction to Signals and Systems

363 Views

article

13.3 : 에너지 및 전력 신호

Introduction to Signals and Systems

220 Views

article

13.4 : 짝수와 홀수 신호

Introduction to Signals and Systems

659 Views

article

13.5 : 기본 연속 시간 신호

Introduction to Signals and Systems

176 Views

article

13.6 : 직사각형 및 삼각형 펄스 함수

Introduction to Signals and Systems

510 Views

article

13.8 : 기본 이산 시간 신호

Introduction to Signals and Systems

183 Views

article

13.9 : 신호에 대한 기본 연산

Introduction to Signals and Systems

334 Views

article

13.10 : 시스템 분류-I

Introduction to Signals and Systems

161 Views

article

13.11 : 시스템 분류-II

Introduction to Signals and Systems

130 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유