JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
하얀 빛 현미경 간섭 측정법은 표면의 지형을 측정하기위한 광학, noncontact 빠르고 방법입니다. 과 재료 과학에 이온 빔 스퍼터링 또는 레이저 박리 볼륨과 깊이를 결정하기 위해, 그것은 방법은 마찰 테스트 샘플에 상처가 분석 착용 기계적 마모 분석,으로 적용 할 수있는 방법을 표시합니다.
재료 과학 및 공학은 마이크로 미터 측면 해상도로 표면 지형의 정량적 측정을 얻기 위해 종종 필요합니다. 측정 된 표면에서 3D 지형지도 이후 필요한 정보를 추출하는 소프트웨어 패키지의 다양한을 사용하여 분석 할 수 있습니다.
이 글에서 우리가 얼마나 하얀 빛 간섭 측정법, 및 일반 표면 분석 소프트웨어와 함께 일반적으로 광학 profilometry (OP)를 설명, 재료 과학 및 엔지니어링 작업에 사용할 수 있습니다. 이 문서에서는 질량 분광법의 표면 수정에 대한 조사를하고, tribology 및 윤활에 현상을 착용을위한 하얀 빛 간섭 측정법의 응용 프로그램의 수는 시연됩니다. 우리는 에너지가 넘치는 이온 (스퍼터링) 및 레이저 조사 (절제)뿐만 아니라, 마찰 시험 표본의 마모의 전 현장 측정 반도체와 금속의 상호 작용의 제품을 특성화한다. 특히, 우리는 논의 할 것이다 :
일부 고유 단점이 가능 유물, 그리고 하얀 빛의 불확실성 평가간섭 측정법의 접근 방식은 논의하고 설명합니다.
전자, 구조적 및 화학적 : 고체 물질의 표면은 큰 범위의 해당 재료에 대한 관심의 속성을 결정합니다. 연구의 많은 분야에서 물질의 추가 (펄스 레이저 / 마그네트론 스퍼터링 증착, 물리적 / 화학적 기상 증착에 의한 예를 들어, 박막 증착), 물질의 제거 (반응성 이온 에칭, 이온 스퍼터링, 레이저 애블 레이션 등) 또는 일부 다른 프로세스가 특징해야합니다. 또한, 에너지가 넘치는 빛의 펄스 또는 대전 입자와 상호 작용을 통해 표면 수정은 수많은 응용 프로그램을 보유하고 있으며 기본적인 관심입니다. Tribology, 마찰과 마모의 연구 관심의 또 다른 영역입니다. benchtop 규모에서 마찰 테스트 형상의 수많은 존재합니다. 비 등각 연락처 형상이 사용 될 수 있으며, 공 또는 실린더는 하락 또는 시간의 길이를 들면, 평평한 표면, 다른 공, 또는 실린더에 대해 회전하고, 제거 물질의 양이 날이 될 수 있습니다asured. 마모 상처 세 차원과 자연의 불규칙하기 때문에, 광학 profilometry 정확한 마모 볼륨 측정을 얻기에 적합한 유일한 방법 일 수 있습니다. 일반적인 분석 작업은 표면 거칠기 매개 변수, 단계 높이, 소재, 볼륨의 손실, 트렌치의 깊이 등을 포함, 모두는 간단한 2D 및 3D 지형 시각화에 추가로 얻을 수 있습니다.
광학 profilometry 표면의 프로필을 재구성하는 데 사용되는 광학 방법입니다. Profilometric 방법은 하얀 빛의 간섭, 레이저, 또는 공 촛점 방법이 포함되어 있습니다. 일부 광학 profilometers는 종래의 회절 - 제한된 현미경의 목표에 따라 접근 방법을 통해 정보를 얻습니다. 예를 들어, 스캔 레이저 표면의 지형과 트루 컬러 정보를 획득 할 수있는 현미경과 통합 할 수 있습니다. 두 번째 방법은 세리를 구성하고 기존 목표의 초점 아주 작은 깊이를 이용하는 기술을 사용3D 지형지도를 얻을 수 표면의 포커스에 "이미지 슬라이스"의 에스.
이 작품에서 우리는 하얀 빛 간섭 현미경 / profilometer은 기계적 마모 공정 중에 손실 자료의 양의 측정을 가능하게, 또는 이온 스퍼터링의 분화구 또는 레이저 어블 레이션 등의 재료 에칭 프로세스 동안 방법을 보여줍니다. 대부분의 관심은 다양한 응용 분야에 널리 이용하고 매력적인 만들어 대형 설치 용량을 설명하기 위해이 방법의 방법으로 지급됩니다. WLI 대부분의 유형은 샘플 표면에서 반사 참조 광 신호와 빛 사이의 간섭을 야기 할 현미경 대물에 내부 미러를 사용하는 Mirau 기술을 사용합니다. 전체 Mirau 간섭이 현미경 대물 렌즈 내부에 맞게과 일반 광학 현미경 (그림 1)에 커플 링 될 수 있기 때문에 Mirau 간섭 측정법의 선택은 간단한 편의에 의해 결정됩니다. 2 차원 간의 일련의ferograms은 비디오 카메라로 구입하고, 소프트웨어는 3D 지형지도를 조립하고 있습니다. 흰색 빛 소스는 단색 소스에 고유의 "프린지 순서"모호함을 극복하는 데 도움이 폭 넓은 스펙트럼 조명을 제공합니다. 빛의 단색 소스가 얕은 지형 기능의보다 정확한 측정을 얻기 위해 사용할 수 있습니다. 측면 해상도가 근본적으로 λ / 2 (수치 공, NA = 1)로 제한하지만, 대부분의 경우에 큰입니다, 배율에 연결 / 뷰 필드 크기 설정에 목적의 NA에 의해 결정된다. 심판의 표 1. 1 모든 언급 매개 변수의 직접적인 비교가 있습니다. 기술의 간섭 성격의 함수되는 깊이 해결 방법 ≈ 1 nm의. Mirau WLI에 대한 자세한 내용은 심판이 판결에서 찾을 수 있습니다. 2, 3. 하얀 빛 간섭 접근 방식에 대한 소개 참조에서 찾을 수 있습니다. 4.
표면 분석을위한 다른 방법은 원자 그렇게해야 아르전자 현미경 (SEM), 그리고 스타일러스 profilometry을 스캔 전자 현미경 (AFM). WLI 기술은 이러한 방법에 손색이 비교하고 방법의 광학 특성에 기인 자신의 장점과 단점을 가지고있다.
AFM은 3D 이미지와 따라서 해당 크로스 섹션을 얻을 수 있지만 AFM은 측면 (<100 μm)와 깊이 (<10 μm) 축에 제한 스캐닝 기능이 있습니다. 이러한 대조적으로, WLI의 주요 장점은 동시에 실제 3D 영상 기능을 갖춘 몇 mm까지의 유연한 뷰 필드 (FOV)입니다. 우리가 보여되므로 또한, 하나는 단순히 표면 수정의 문제의 다양한 해결 할 수 있도록 다양한 수직 스캔 범위를 이용하실 수 있습니다. AFM과 함께 작업 한 연구자들은 낮은 수직 그라디언트의 연장 기능을 측정하는 샘플의 비행기 위치와 문제를 파악하고 있습니다. 일반적으로, 하나는 AFM 이상 "특급"기술로 WLI / OP 생각 할 수 있습니다. 물론, 있습니다만 AFM은 적합하는 지역 번호 : 해결 할 측면 기능이 특징 WLI의 측 방향 해상도보다 작은 크기, 또는 WLI에서 데이터 그 방식으로 샘플의 알 수없는 복잡한 광학 특성으로 인해 모호 인스턴스가있을 때 측정의 정밀도 (나중에 논의 예정) 등에 영향을 미치는
SEM은 기존의 광학 현미경이 제공 할 수있는보다 큰 초점을 맞추고 많은 깊이와 FOV 크기의 측면에서 매우 유연성, 표면에서 볼 수있는 강력한 방법입니다. 동시에, SEM에 의한 3D 영상은 그렇다면 다른 사이의 여색 방법으로 3D 이미지로 변환, 또는 광 뷰어와 관찰을 통해, 또는 깊이를 직접 계산에 사용되는 스테레오 쌍 이미지를 복용해야합니다 특히 같은 성가신입니다 샘플에 대한 관심 포인트. 5 대조적으로, WLI / OP profilometry 동시에 유연한 FOV와 3D 재건 사용하기 쉬운 제공합니다. WLI는 전체를 스캔높이 범위는 (나노 미터에서 마이크론의 수백) 특정 샘플에 필요한. WLI는 SEM에 문제가있을 수 있습니다 샘플 소재의 전기 전도성에 의해 영향을받지 않습니다. WLI는 명확하게 진공을 필요로하지 않습니다. 다른 한편으로는 SEM는 우수한 정보를 제공하는 응용 프로그램의 수 있습니다 : 샘플의 다른 부분은 topographically 구별 할 수 있습니다 특징 WLI의 측 방향 해상도 아래의 크기, 또는 가지 경우 해결 될 수있는 측면 기능이있는 경우에만 보조 전자 방출 계수 다릅니다.
널리 차 이온 질량 분석법 6 및 microelectromechanical 시스템 특성 7 분야에서 사용되는 표면 검사 하나 더 기술은 스타일러스 profilometry입니다. 이 기술 때문에 그 단순성과 견고성의 인기가 있습니다. 이 샘플 표면을 통해 스타일러스 팁의 직접적인 기계적 접촉 검사를 기준으로합니다. 이 거친 접촉 도구입니다어느 한 번에 하나의 라인을 따라 스캔 할 수 있습니다. 이 3D 표면 래스터 스캔 이미징 매우 시간이 소요합니다. 스타일러스 기술의 또 다른 단점은 높은 비율과 팁 반경과 팁의 꼭지각을 암시의 특성 팁 크기 (일반적으로 몇 미크론에 submicron)와 비교 크기의 표면 기능을 측정의 어려움입니다. 스타일러스 profilometry의 장점은 WLI / OP 측정 (나중에 논의 예정)의 정확도에 영향을 미칠 수있는 샘플의 광학 속성을 변화에의 무감각합니다.
현재 문서의 표면지도는 종래의 Mirau 타입 WLI을 (그림 1)를 사용하여 얻었다. 이러한 Zygo, KLA-Tencor, nanoScience, Zemetrics, Nanovea, FRT, Keyence, Bruker, 그리고 테일러 Hobson와 같은 많은 기업들은 상용 테이블 상단 OP 악기를 생산하고 있습니다. 획득지도를 재건하고 일반적으로 WLI, 스캐닝 전자, O에 사용되는 유형의 상용 소프트웨어를 사용하여 처리 된R 프로브 현미경. 이 소프트웨어는 섹션 프로파일 분석, 무효 및 재료 볼륨 계산, 그리고 비행기의 수정을 건너, 표면의 수학적 조작을 수행 할 수있는 능력이 있습니다. 다른 소프트웨어 패키지는 이러한 기능의 일부를 자동화 할 수 있습니다.
Access restricted. Please log in or start a trial to view this content.
1. 일반 WLI 스캔을위한 하드웨어 정렬
WLI를 통해 양적 정보를 얻으려면 다음 단계 지침 역할을 할 수 있습니다. 이 연산자는 간섭 운영의 기본 지식을 가지고하는 것으로 간주됩니다. 가이드 라인에 관계없이 특정 악기의 일반적인 현상입니다. 일부 조사의 경우 표본은 평면됩니다. 다른 들어, 표본이 굽어 될 수 있습니다.
2. 일반 소프트웨어를 사용하여 볼륨 분석
tribology에서 테스트 기계 종종 하락 또는 평면 또는 다른 실린더에 대해 회전하는 공이나 실린더 같은 비 등각 연락처 테스트 구조를 사용합니다. 일반적으로, 때때로 소재 한 표면에서 다른 전송할 수 있습니다 있지만 자료, 연락처를 슬라이딩의 시점에서 손실되고,이 "전송 층"에 대한 물질의 과잉으로 측정됩니다연락 표본의 전자. 마모 상처 세 차원과 자연의 불규칙하기 때문에, 광학 profilometry 정확한 마모 볼륨 측정을 얻기에 적합한 유일한 기술 할 수 있습니다 - 예상치는 사용할 수 없습니다. 목표는 시험의 완료에 문의 지역에서 (또는 확보) 손실 될 수 있습니다 재료의 매우 작은 양을 측정하는 것입니다.
측정의 기본 원리는 그대로 표면의 수준에서 수학 비행기를 정의하는 것입니다 : 표면 분석 소프트웨어는 "고체 표면"(제로 수준),이 레벨 위의 무엇이든이 있다는 것을 가정 "빈은." "고체 표면"의 비행기 아래에있는 통합 제거 볼륨을 측정하는 분석 함수는 다음과 같이 언급 될 것 "무효 볼륨입니다." "고체 표면"(파편의 축적 등)의 평면 위의 통합 볼륨을 측정하는 기능은 "재료 볼륨입니다."라고합니다
실제 그대로 표면 AR전자 드물게 완벽하게 매끄러운, 평면. 작은 기능을 측정 최대의 정확성을 위해 관심 (AOI)의 영역을 정의하는 좋은 연습이다;있는 외부 지역은 분석에서 제외됩니다. AOI는 표면의 불규칙성이 교란 지역에서 진정되지 계산에 추가 볼륨을 기여하기 때문에 측정 영역을 제한하는 데 사용됩니다.
3. 평평한 표면 - 기계 마모 분석
다음 세 단계는 마모 볼륨을 측정하는 다른 방법을 설명합니다.
위의 예에서 마모 상처에서 손실없이 망 자료가 없습니다 대신 재료 이득이 있습니다. 이 특이한하지만, 자료가 하나의 테스트 counterface에서 다른 전송시 가끔 발생합니다.
동일한 "평평한 표면 특성화"접근 방식은 이온 스퍼터링에 따르 예에서 고려 레이저 절제와 실험에 제거 볼륨을 얻기위한 유용합니다.
4. 평평한 표면 - 크레이터와 이온 빔 프로파일 측정은 스퍼터링 항복을 추정하기 위해, 그리고 시간에 대한 심도 보정을 수행 할 수
직접 무게 또는 석영 microcrystal 밸런스, 8, 9 우리는 WLI 방법은 직접 시각화를 위해 유용하다 발견을 바탕으로 대량 손실 방법을 사용하여 스퍼터링 수율을 계산하는 알려진 널리 활용 방법에 대한 대안으로 / 이온 빔 부분을 스퍼터링 이온 빔. 그림 8의 스캔 정적 스퍼터링 / 래스터 얻은 분화구는 (올리브 열린 자신의 분화구에 대해 일반적으로 사건이 정적 5 케빈 150 EV 아르곤 + 이온 빔의 스폿 (녹색 고체, 파란색 점선)의 길이 방향 단면을 비교 서클 및 시안 오픈 다이아몬드) 100 × 100 픽셀 잘라 내기의 표면 (110) 단결정 위에 같은 이온 빔의 디지털 래스터 스캔하여 얻을. 정적 빔 중복에 해당하는 곡선은 이온 빔의 래스터 스캔하는 동안 분화구를 생성 방법을 보여줍니다 할 수있는 분화구 중 하나 가장자리 D를 스퍼터프로파일을 epth.
5. 평평한 표면 - 특성화 Ultrafast 레이저 어블 레이션의
Ultrafast 레이저 절제는 열 영향 영역을 최소화하면서 고체에서 물질을 제거하기위한 방법으로 인정 받고 있습니다. (10)는이 과정이 높은 가로 세로 비율 나머지 자료에 최소한의 손상 (균열, 산화)와 고속 micromachining 수 있으며, 가능성을 열어 투명 재료의 효율적 절제 11. 최근에, 관심이 분석 도구로 ultrafast 절제를 사용하여 개발하였습니다. 삭마 과정의 12-15 높은 비선형도 (크게 방사능 스폿 사이즈 아래 ablated 스폿 사이즈를 줄이는 수단을 제공 최고의 이온 빔 방식과 경쟁력 동안 일반적으로 1 / E 2)에 의해 정의, 심지어 회절 한계 아래로 설명하는되었으므로. 16 깊이 해상도, <20 nm의 수 있습니다. 제거 속도는 쉽게 증가 할 수 있습니다nonlinearly 레이저 fluence를 증가하여 물질의 마이크론을 통해 있도록 매우 빠른 속도 프로파일이 가능합니다. 이상적으로, ultrafast 절제에 의해 물질 제거를 특성화하는 것은 신속하고 양적 잘 교정 기술, WLI에 의해 이루어 모든 특성이 필요합니다.
그림 9는 ultrafast (60 FS, 800 nm의) ≈ 8 μm와 0.4 및 1.0 J / cm 2에 해당하는 fluences을 갖는다.의 스폿 크기에 초점을 맞춘 레이저 빔과 갈륨 비소의 반복적 인 절제에 의해 형성된 두 이웃 분화구의 pseudocolor 이미지를 보여줍니다
6. 구부러진 표면 - 기계 마모 분석
곡선 일반 표면 (공 또는 실린더)의 볼륨 분석은 평면의 그것과 비슷하지만 곡률 제거가 필요합니다. 다음 프로토콜은 철강 공에 원형 마모 상처의 분석을 보여줍니다. 공에서 잃어버린 볼륨을 찾으려면이있는 공을 변환하는 수학 처리를 수행 할 필요가 있습니다들여 쓰기 시청할 수있는 평면 비행기로 평면 면적은 다음 평면 표면에 제 3 항에 이루어졌다로 들여 쓰기의 볼륨을 측정합니다. 공의 마모 상처가 먼저 히스토그램 기법으로 다음 간단한 자동 기술을 사용하여 측정됩니다.
다음 단계는 마모 볼륨을 측정하는 다른 방법을 설명합니다.
Access restricted. Please log in or start a trial to view this content.
그림 1은 본 연구에 사용 된 간단한 profilometer의 사진 :. 여러 목적의 터렛이 그림에서 볼 수있다. 두 목표는 (10X와 50x) 표준이며, 두 Mirau 목표 (10X와 50x)입니다. 이 현미경은 0.62의 스텝 현명한 확대 배율, 1.00, 1.25, 또는 2.00을 선택 할 수 중간 배율 기능이 있습니다.
Access restricted. Please log in or start a trial to view this content.
예 1
WLI는 널리 마찰 작품의 표면 특성에 사용하지만, 실제로 많은 연락처 형상에 대한 마모 볼륨의 양적 측정을위한 강력한 방법입니다하지 않습니다. WLI는 여러 시각화 소프트웨어 패키지 중 하나를 사용하여 분석 할 수있는 표면의 전체 3D 표현을 생산하고 있습니다. 이 패키지는 측정의 다양한 유형을 수행 할 수 할 수 있습니다. 더 큰 측면 해상도를 들어, 이미지는 μm의 해...
Access restricted. Please log in or start a trial to view this content.
관심 없음 충돌이 선언 없습니다.
방사능 갈륨 비소 샘플은 시카고의 일리노이 대학의 양씨 Cui에 의해 제공되었다. 이 작품은 계약에 따라 지원이 번호 UChicago Argonne, LLC 및 에너지 미국학과 및 교부금 NNH08AH761 및 NNH08ZDA001N을 통해 NASA에 의해, 및 계약 DE-AC02에 따라 에너지의 미국학과 자동차 기술의 사무실 사이 DE-AC02-06CH11357 - 06CH11357. 전자 현미경은 Argonne 국립 연구소, UChicago Argonne, LLC의 계약에 의해 DE-AC02-06CH11357에서 운영하는 과학 연구소의 에너지 Office의 미국학과에서 재료 연구에 대한 전자 현미경 센터에서 수행되었다.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
단결정시의 기판, 갈륨 비소 및 잘라 내기 | 스퍼터링과 절제를위한 | ||
순수 금속 합금 | tribology 예제 |
Access restricted. Please log in or start a trial to view this content.
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유