Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol presented here details the procedures of data collection and data analysis for image-guided optical coherence tomography (OCT) and demonstrates its application in multiple rodent models of ocular diseases.

Abstract

Ocular diseases, such as age-related macular degeneration, glaucoma, retinitis pigmentosa, and uveitis, are always accompanied by retinal structural changes. These diseases affecting the fundus always exhibit typical abnormalities in certain cell types in the retina, including photoreceptor cells, retinal ganglion cells, cells in the retinal blood vessels, and cells in the choroidal vascular cells. Noninvasive, highly efficient, and adaptable imaging techniques are required for both clinical practice and basic research. Image-guided optical coherence tomography (OCT) satisfies these requirements because it combines fundus photography and high-resolution OCT, providing an accurate diagnosis of tiny lesions as well as important changes in the retinal architecture. This study details the procedures of data collection and data analysis for image-guided OCT and demonstrates its application in rodent models of choroidal neovascularization (CNV), optic nerve crush (ONC), light-induced retinal degeneration, and experimental autoimmune uveitis (EAU). This technique helps researchers in the eye field to identify rodent retinal structural changes conveniently, reliably, and tractably.

Introduction

Ocular diseases affecting the fundus always exhibit typical abnormalities in certain cell types in the retina, such as photoreceptor cells, retinal ganglion cells, cells in the retinal blood vessels, and cells in the choroidal blood vessels, which may subsequently influence the visual acuity of patients1. To avoid irreversible visual impairment, timely diagnoses and appropriate treatments are required1. Optical coherence tomography (OCT) has been widely used in the clinic to evaluate a range of ocular diseases, including age-related macular degeneration, retinitis pigmentosa, glaucoma, uveitis, and retinal detachment, am....

Protocol

All the animal procedures conformed to the Association for Research on Vision and Ophthalmology's statement on the Use of Animals in Ophthalmic and Vision Research and were approved by the Institutional Animal Care and Use Committee of Wenzhou Medical University (WMU). The rats and mice were given free access to water and food with an environmental light intensity of 18 lux on a 12 h dark/light cycle.

1. Preparation of the ocular animal models

  1. Mouse laser-induc.......

Representative Results

Image-guided OCT can be used to monitor the development of the laser spot in laser-induced choroidal neovascularization (CNV) in mice. As shown in Figure 1, the newborn blood vessels passed through Bruch's membrane as well as the retinal pigment epithelium (RPE) layer and formed a fibrotic scar after laser injury11,12. This lesion spot could be captured under either full-size scanning (Figure 4A) or .......

Discussion

This protocol provides instructions for the image collection and thickness measurement of image-guided OCT. By demonstrating the four most popular rodent models of ocular diseases, the researchers found that image-guided OCT provided excellent performance in examining drastic retinal structural alterations. In fact, with high-resolution images, tiny lesions can be found easily in OCT images as well. With the aid of image-guided OCT, a group in the laboratory also found abnormal hyperreflectivity spots within the OPL in a.......

Acknowledgements

The authors thank the members of the State Key Laboratory of Ophthalmology, Optometry, and Vision Science for their technical support and useful comments regarding the manuscript. This work was supported by grants from the National Natural Science Foundation of China (82101169, 81800857, 81870690), the Zhejiang Provincial Natural Science Foundation of China (LGD22H120001, LTGD23H120001, LTGC23H120001), the Program of Wenzhou Science and Technology Bureau of China (Y20211159), the Guizhou Science and Technology Support Project (Qiankehezhicheng [2020] 4Y146) and the Project of State Key Laboratory of Ophthalmology, Optometry and Vision Science (No. K03-20220205).

....

Materials

NameCompanyCatalog NumberComments
BALB/c mouseBeijing Vital River Laboratory Animal Technology Co., LtdAnimal model preparations
C57BL/6JNifdc mouseBeijing Vital River Laboratory Animal Technology Co., LtdAnimal model preparations
Carbomer Eye GelFabrik GmbH Subsidiary of Bausch & LombMoisten the cornea 
Complete Freund’s adjuvantSigma F5881EAU experiment
Experimental platformPhoenix Technology GroupAnimal model preparations
hIRBP161-180Shanghai Sangon Biological Engineering Technology & Services Co., Ltd.EAU experiment
KetamineCeva Sante AnimaleGeneral anesthesia
Laser boxHaag-Streit GroupMerilas 532αAnimal model preparations
Lewis ratBeijing Vital River Laboratory Animal Technology Co., LtdAnimal model preparations
Mycobacterium Tuberculosis H37RASigma 344289EAU experiment
Phoneix Micron IV with image-guided OCT and image-guided laserPhoenix Technology GroupAnimal model preparations
Tissue forcepsSuzhou Mingren Medical Instrument Co., LtdMR-F101A-5Animal model preparations
Tropicamide Phenylephrine Eye DropsSANTEN OY, JapanEye dilatation
Vannas scissorsSuzhou Mingren Medical Instrument Co., LtdMR-S121AAnimal model preparations
XylazineCeva Sante AnimaleGeneral anesthesia

References

  1. Cen, L. -. P., et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nature Communications. 12, 4828 (2021).
  2. Kashani, A. H., et al.

Explore More Articles

Image guided Optical Coherence TomographyRetinal Structural ChangesOcular DiseasesAge related Macular DegenerationGlaucomaRetinitis PigmentosaUveitisPhotoreceptor CellsRetinal Ganglion CellsRetinal Blood VesselsChoroidal Vascular CellsFundus PhotographyChoroidal NeovascularizationOptic Nerve CrushLight induced Retinal DegenerationExperimental Autoimmune Uveitis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved