Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The phagokinetic motility track assay is a method used to assess the movement of cells. Specifically, the assay measures chemokinesis (random cell motility) over time in a quantitative manner. The assay takes advantage of the ability of cells to create a measurable track of their movement on colloidal gold-coated coverslips.
Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles1,2,3. Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread4,5. Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell6,7,8. However, many biological questions about cell migration remain unanswered.
The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers.
The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip9,10. With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells11,12, fibroblasts9, neutrophils13, skeletal muscle cells14, keratinocytes15, trophoblasts16, endothelial cells17, and monocytes10,18-22. The protocol involves the creation of slides coated with gold nanoparticles (Au°) that are generated by a reduction of chloroauric acid (Au3+) by sodium citrate. This method was developed by Turkevich et al. in 195123 and then improved in the 1970s by Frens et al.24,25. As a result of this chemical reduction step, gold particles (10-20 nm in diameter) precipitate from the reaction mixture and can be applied to glass coverslips, which are then ready for use in cellular migration analyses9,26,27.
In general, the phagokinetic track motility assay is a quick, quantitative and easy measure of cellular motility. In addition, it can be utilized as a simple high-throughput assay, for use with cell types that are not amenable to time-lapsed imaging, as well as other uses depending on the needs of the researcher. Together, the ability to quantitatively measure cellular motility of multiple cell types without the need for expensive microscopes and software, along with the use of common laboratory equipment and chemicals, make the phagokinetic track motility assay a solid choice for scientists with an interest in understanding cellular motility.
1. Preparation of Gelatin-coated Coverslips
Note: Coverslips, needles and tweezers need to be sterile to eliminate possible contaminating microorganisms, as well as endotoxins that will affect cellular functions, including motility.
Note: Be careful not to allow the gelatin to touch the dish or you will not be able to remove the coverslips from the dish.
2. Preparation of Colloidal Gold-coated Coverslips
Warning: Chloroauric acid is harmful if swallowed, causes severe skin burns and eye damage and may cause an allergic skin reaction. Toxic if swallowed.
Warning: Sodium citrate may cause eye and skin irritation. It may also cause respiratory and digestive tract irritation.
Warning: The heating of the solution should be performed in the fume hood, as vapors can be harmful/toxic. The vapors are destructive to the tissue of the mucous membranes and upper respiratory tract.
Note: Because there might be variations in the efficiency of gold particle precipitation, it is advised to first add 0.5-1 ml of the colloidal gold solution to the gelatin-coated coverslips and then place the 24-well dish in the incubator for 0.5 hr. After this incubation time, the coverslips should be checked under the light microscope for the appropriate density of the gold particles on the coverslips. See Figure 1 for 20x microscopy images of examples of too low and too high a concentration of gold particles. See Figure 2 for 40x microscopy images of an ideal concentration of gold particles (at least for use with monocytes). The optimal density of the gold nanoparticles on the slide should be experimentally determined for each cell type used, as the characteristics of the different cells will dictate their strength of movement on the coverslips. If the concentration of gold particles is insufficient, add an additional 0.5-1 ml of the colloidal gold solution to the gelatin-coated coverslips.
Depending on the cell size, the appropriate concentration of gold particles can vary and, thus will ultimately depend on the size of the cell examined for motility. For example, with human monocytes being small-sized cells (~10-20 μm28), a higher concentration of gold particles was required in our analyses. The appropriate distribution of gold nanoparticles provides the researcher with the ability to easily and efficiently distinguish the edges of cellular tracks. A concentration of gold particles that is too high hampers the ability of cells to move and therefore to accurately measure their motility, while a concentration of gold particles that is too low limits ones ability to delineate an accurate track of motility.
Important Note: If the synthesis of gold nanoparticles is problematic, synthesized gold nanoparticles are commercially available in sizes from 5 nm to 400 nm. Additionally, fluorescent microspheres have also been used in studies of cell motility29. However, the use of these microspheres requires a fluorescent microscope for the analysis of cell migration.
Important Note: Always keep the colloidal gold-coated coverslips in some type of liquid/media as the gold particles can flake off from the coverslips if allowed to dry. The colloidal gold coverslips should be used within 2-3 months from the date that they were made.
Quality Control: In a single phagokinetic track motility assay, it is critical to use coverslips that are characterized by a similar concentration of gold particles. This simple point will allow for the quantitative differences in cellular motility between samples to be solely due to the nature of the treatment and not the physical properties of the colloidal gold-coated coverslips. We favor using only coverslips made at the same time in individual experiments, although we have shown that as long as the density of the gold nanoparticles are equal, the use of coverslips from different preparations is appropriate.
3. Analysis of Cellular Motility
Note: The number of cells transferred to the single well needs to be determined for each cell type studied. Ideally, cells need to be equally distributed on the colloidal gold-coated coverslip, which in turn will allow for the statistical analysis of only tracks created by a single cell. If cells are plated at too high a concentration, it becomes highly probable that overlapping tracks of multiple cells will be seen. Overlapping tracks cannot be accurately quantitated and, thus, they cannot be taken into account in the final analyses of the movement of the tested cells. Overlapping tracks as a result of the involvement of multiple cells are usually easily observed; as merged or crossed tracks (in the field of analysis) in which two or more cells can be observed in the same contiguous cleared area.
Note: If experimental colloidal gold-coated coverslips need to be stored and/or analyzed at a later time, the cells and gold nanoparticles need to be fixed on the coverslips. To accomplish this fixation step; following Step 3.3, first wash coverslips carefully 2 times with 1x PBS (dipping of coverslips is preferable, as a removal of gold nanoparticles from coverslips must be avoided), then use a standard cell fixation method, such as incubation with room temperature 3% paraformaldehyde. After a 15-min incubation, the 3% paraformaldehyde should be removed and the coverslips washed carefully 3 times with 1x PBS. The fixed coverslips can be stored in a refrigerator.
Note: The gold nanoparticles of the size used in the phagokinetic track motility assay has been found to be completely nontoxic for cells30. If necessary, the viability of the examined cells can be assessed by staining with trypan blue or examined for other markers of cellular viability. One would have to take into account the need for fixation, type of fixation, etc., if this step needs to be undertaken.
Shown is an example of pictures taken under a light microscope showing a track area cleared by a single cell (a monocyte from our experiments is shown in Figure 2). Non-motile cells create characteristic small, oval or circle-shaped tracts around themselves indicating a low basal level of movement for these unstimulated cells (Figures 2A and 2B). In contrast, highly motile cells [in our system, human cytomegalovirus (HCMV)-infected cells] are characterized by a directional movement shown...
The phagokinetic track motility assay presented in this article is a simple and highly effective method for quantitative analysis of cell migration. Because multiple cell types can be analyzed9-17, this method has the potential broad usage across multiple disciplines. The use of colloidal gold-coated glass coverslips allows for the measurement of a track area cleared by a moving cell. The assay can measure the effect of different stimuli (i.e. growth factors, purified ECM ligands, viruses, bac...
No conflicts of interest declared.
This work was supported by grants from the National Institutes of Health (AI050677, HD-051998, and GM103433), a Malcolm Feist cardiovascular research fellowship, and an American Heart Association predoctoral fellowship (10PRE4200007).
Name | Company | Catalog Number | Comments |
Glass Coverslips (15mm) | Fisher Scientific | 12-545-83 | |
Gelatin 300 Bloom | Sigma-Aldrich | G-1890 | |
Tetrachloroauric Acid Trihydrate | Fisher Chemical | G54-1 | 14.5 mM (a final working solution) |
Sodium Citrate | Fisher Scientific | BP327-500 | 0.5% (a final working solution) |
Paraformaldehyde | Fisher Scientific | O4042 | 3% (a final working solution) |
100 mm Tissue Culture Dish | Sarstedt | 83.1802 | |
12-Well Plates | Fisher Scientific | 08-772-29 | |
24-Well Plates | Fisher Scientific | 07-200-84 | |
Techne Oven Hybridiser HB-1D | LabPlanet | 2040500 | The standard laboratory oven will suffice |
10 ml Serological Pipettes | Sarstedt | 86.1254.001 | |
Pipet-Aid Filler/Dispenser | Drummond | 13-681-15 | |
P200 Single-Channel Manual Pipette | Rainin | PR-200 | |
200 ml Barrier Tips | CLP | BT200 | |
ImageJ software | http://rsb.info.nih.gov/ij/ | License: Public Domain | |
Nikon Eclipse TE300 with a photometrics CoolSNAPfx monochrome 12-bit CCD camera | Nikon | Discontinued; The most comparable specification has Nikon Eclipse Ti, but a lower end Nikon 80i will be suitable as well. Other brands also provide comparable microscopes. | |
Note: The reagents and equipment listed below have been utilized by us in our various studies. Other supplies, suppliers, reagents, and equipment can be used, as long as they have similar specifications. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone