Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe a method to map mechanical properties of plant tissues using an atomic force microscope (AFM). We focus on how to record mechanical changes that take place in cell walls during plant development at wide-field mesoscale, enabling these changes to be correlated with growth and morphogenesis.
We describe a recently developed method to measure mechanical properties of the surfaces of plant tissues using atomic force microscopy (AFM) micro/nano-indentations, for a JPK AFM. Specifically, in this protocol we measure the apparent Young’s modulus of cell walls at subcellular resolutions across regions of up to 100 µm x 100 µm in floral meristems, hypocotyls, and roots. This requires careful preparation of the sample, the correct selection of micro-indenters and indentation depths. To account for cell wall properties only, measurements are performed in highly concentrated solutions of mannitol in order to plasmolyze the cells and thus remove the contribution of cell turgor pressure.
In contrast to other extant techniques, by using different indenters and indentation depths, this method allows simultaneous multiscale measurements, i.e. at subcellular resolutions and across hundreds of cells comprising a tissue. This means that it is now possible to spatially-temporally characterize the changes that take place in the mechanical properties of cell walls during development, enabling these changes to be correlated with growth and differentiation. This represents a key step to understand how coordinated microscopic cellular changes bring about macroscopic morphogenetic events.
However, several limitations remain: the method can only be used on fairly small samples (around 100 µm in diameter) and only on external tissues; the method is sensitive to tissue topography; it measures only certain aspects of the tissue’s complex mechanical properties. The technique is being developed rapidly and it is likely that most of these limitations will be resolved in the near future.
Growth in plants is achieved by the coordinated expansion of the rigid cell walls that surround each and every cell of the organism. Accumulating evidence indicates that it is through the modification of cell wall chemistry that plants locally control this expansion. The expansion is thought to be driven primarily by strain on the cell walls, caused by the cell’s high turgor pressure; this strain response to turgor pressure is governed by the mechanical properties of the cell walls1. Little is known of these mechanical properties and how they change during development. Furthermore little is known of how these mechanical properties are controlled and whether feedbacks contribute to alter cell wall chemistry in a manner that is apparently coordinated across a tissue. If we are to understand the connection between chemical and mechanical changes in plant cell walls during development, and ultimately how these microscopic interactions govern a plant’s macroscopic growth, a method that can monitor mechanical properties of cell walls in developing organs at the cellular or tissue scale is required.
The atomic force microscopy (AFM) method described here, which is based on micrometer or nanometer tissue compressions or indentations, was developed precisely to measure the mechanical properties of cell walls in developing organs simultaneously at subcellular resolutions and across entire regions of tissue. Other methods have either a resolution that is too low or too high: the extensometer is only able to measure the average mechanical properties of a whole tissue at the millimeter scale2-4, a scale that is for instance too large to measure early events in organogenesis; the microindenter can take measurements at subcellular resolution at the nanometer scale, but it is restricted to measuring isolated cells and not groups of cells or organs5-7. With the AFM, the required tissue, cellular, and subcellular resolutions can be achieved8-10. Recently several protocols have been developed specifically to measure mechanics of plants tissue that could also be used11,12.
We will present here how to evaluate the elasticity of the tissue through measurement of the apparent Young’s modulus13.
The Young modulus is commonly used to describe the stiffness of a material. During small deformation the force required to deform a material is proportional to the area of indentation. The Young modulus is this coefficient. In the case of a continuous homogenous material the same coefficient will be measured regardless of the indentation type (size and shape) but will change with the speed of the measurement. In the case of the complex structure of plants tissue, we have observed so far that the force is proportional to the deformation allowing the determination of a coefficient of proportionality that we name “apparent young modulus”. In contrast from continuous medias in the plants, this apparent young modulus is sensitive to the size of the indentation. It does not correspond to the young moduli of a pure cell wall. It best describes the elasticity of the scaffolding of the cell-wall of the tissue.
1. Prepare Glass Slides for Mounting Sample
2. Dissecting and Mounting Meristem Samples
3. Mounting Root or Hypocotyl Samples
4. AFM Preparation and Sensitivity Calibration (for a JPK Nanowizard AFM)
5. Data Acquisition: Apparent Young’s Modulus Cartography
6. Data Analysis: Apparent Young’s Modulus Calculations
In Figure 1 we present typical Young moduli maps of floral meristems (Figures 1A and 1B), young and old hypocotyls (Figures 1C-F), and root meristem (Figure 1G and 1H). In all experiments the indenter is hemispherical, but its radius differs so that different spatial resolutions can be achieved. Figures 1C and 1D show typical results for meso-nanoscale indenters (50 nm radius) with meso-...
In plants, changing mechanical properties play a major role in directing growth and morphogenesis. To date there has been great progress in unraveling the genetic and chemical networks that control plant growth, but our knowledge of how these networks contribute to and are affected by changes in mechanical properties is rudimentary. This method should enable us to fill this gap, and so it should be of strong interest to scientists studying any aspect of plant growth or morphogenesis. We now summarize the challenges and l...
The authors have nothing to disclose.
We give special thanks to Yves Couder for many helpful discussions. We thank Atef Asnacios for the calibration of the cantilevers and discussion. We thank Lisa Willis, Elliot Meyerowitz, and Oliver Hamant for critical reading. This work was funded in part by Human Frontier Science Program grant RGP0062/2005-C; the Agence Nationale de la Recherche projects ‘‘Growpec,’’ and ‘‘Mechastem’’.
Name | Company | Catalog Number | Comments |
AFM | JPK | NanoWizard | All the 3-generation are able to do the work with the same preferment. |
AFM stage | JPK | CellHesion | Required for sample with low topography (less than 11 µm between the lowest and the highest point in the area of force scanning). |
AFM optics | JPK | Top View Optics | Very important in order to position the sample. Could be replaced by long range binoculars or a microscope. |
Stereo microscope | Leica | M125 | Any type of stereo microscope could do. |
150 nm mounted cantilever | Nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel, Switzerland | R150-NCL-10 | To measure only the cell wall at the surface of the epidermis use. |
1 µm mounted cantilever | Nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel, Switzerland | SD-Sphere-NCH-S-10 | To measure the mechanics of the cell wall orthogonal to the surface of the epidermis. |
Tipless cantilever | Nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel, Switzerland | TL-NCH-20 | To measure the local mechanics of the tissue (2-3 cell wide) use a 5 µm mounted cantilever. We attached a 5 µm borosilicate bead to a tipless cantilever. |
5 µm silicon microspheres | Corpuscular | C-SIO-5 | |
Araldite | Bartik S.A. 77170 Coubet, France | Araldite for fixing the bead to the tipless cantilever. | |
Low melting agarose | Fisher Scientific Fair Lawn, New Jersey 07410 | BP160-100 | 34-45 °C gelation temperature |
D-Mannitol | Sigma-Aldrich, 3050 Spruce Street, St. Louis, MO 63103 USA | M4125-500G | |
2 Stainless Steel No. 5 Tweezers | Ideal-Tek 6828 Balerna, Switzerland | 951199 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone