Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This article describes microinjection and electroporation of mouse testis in vivo as a transfection technique for testicular mouse cells to study unique processes of spermatogenesis. The presented protocol involves steps of glass capillary preparation, microinjection via the efferent duct, and transfection by electroporation.
This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis.
The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector pEGFP-C1, which expresses enhanced green fluorescent protein (eGFP) and also the pDsRed2-N1 vector expressing red fluorescent protein (DsRed2). Both encoded reporter genes were under the control of the human cytomegalovirus immediate-early promoter (CMV).
For performing gene transfer into mouse testes, the reporter plasmid constructs are injected into testes of living mice. To that end, the testis of an anaesthetized animal is exposed and the site of microinjection is prepared. Our preferred place of injection is the efferent duct, with the ultimately connected rete testis as the anatomical transport route of the spermatozoa between the testis and the epididymis. In this way, the filling of the seminiferous tubules after microinjection is excellently managed and controlled due to the use of stained DNA solutions. After observing a sufficient filling of the testis by its colored tubule structure, the organ is electroporated. This enables the transfer of the DNA solution into the testicular cells. Following 3 days of incubation, the testis is removed and investigated under the microscope for green or red fluorescence, illustrating transfection success.
Generally, this protocol can be employed for delivering DNA- or RNA- constructs into living mouse testis in order to (over)express or knock down genes, facilitating in vivo gene function analysis. Furthermore, it is suitable for studying reporter constructs or putative gene regulatory elements. Thus, the main advantages of the electroporation technique are fast performance in combination with low effort as well as the moderate technical equipment and skills required compared to alternative techniques.
Mammalian spermatogenesis is considered to be a sophisticated process of self-renewing stem cells successively undergoing mitosis, meiosis and differentiation in order to develop into mature haploid spermatozoa. These morphological changes are orchestrated by different cell types and despite profound attempts, it is still impossible to mimic these processes in cell culture1,2. Hence, research on spermatogenesis up to now relies on living organisms as in vivo models. In general, gene function studies are usually based on transgenic animals. However, generating and sustaining this kind of animal model is time-consuming, cost-intensive and quite elaborate. This is attributed to the required long breeding process for generating and maintaining the transgene over the generations. Additionally, the genetic manipulation of the entire organism by the transgenic or knockout approach is prone to cause physiological impairments when targeting genes with essential functions in multiple regions, e.g., outside the testis or systemically.
Further, some transient transfection methods are associated with some crucial disadvantages. For example, typical drawbacks of virus-mediated gene transfer are the possible provocation of immunoreactions and additional safety regulations, whereas lipofection3 and microparticle bombardment4 might damage the tissue and are limited to a certain cell depth for sufficient transfection efficiency.
In contrast, electroporation (EP) as another common way of transient transfection, seems to constitute a promising technique for enabling in vivo transfection and consistent in vivo gene analysis. In general, EP is referred to as a dynamic phenomenon that depends on local transmembrane voltage with consequently mediated pores within nanoseconds. These gaps can be maintained for milliseconds, sufficient to grant access to DNA, RNA or small molecules5. When the applied voltage is too high, the usually transient character of EP is counteracted due to heat production and induction of too comprehensive permeabilization with consequent irreversible damage of the cell5.
Here, we show that electroporation is an effective and economical transfection system which is capable of being utilized for genetic testis transformation in order to elucidate testicular gene characteristics in vivo. This article addresses plasmid preparation, microinjection via the efferent duct and the subsequent electroporation of mouse testis. This procedure can be the means of choice to achieve fast, specific and efficient transfection of seminiferous tubules of mouse testis in vivo in order to investigate processes of spermatogenesis.
All performed animal experiments have been approved by the local ethics committee (Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei, Mecklenburg-Vorpommern, Germany).
1. Plasmid Preparation
2. Preparation of Microinjection Pipette
3. Anesthesia and Surgery
4. Microinjection and DNA Application
5. Electroporation of Testis
6. Wound Closure and Post-surgery
The experimental setting for performing microinjection and electroporation of mouse testis in vivo as it is used according to the protocol is illustrated in Figure 1. Even though it is possible to acquire industrially manufactured micropipettes, we preferred to generate our own pipettes by pulling (Figure 1A) and beveling (Figure 1B) glass capillaries so that they fitted our needs. The equipment for microinjection and electroporation is illustrated in Fi...
Research in the field of reproductive biology, particularly in the area of male fertility and spermatogenesis inevitably relies on living organisms. In order to examine testicular function, no adequate cell culture/in vitro system has been established capable of reflecting all the crucial morphological changes from a diploid spermatogonium to a haploid mature spermatozoon1,2. Thus, the generation of genetically modified animals is often a necessary and as such a valuable tool in male ...
Marten Michaelis, Alexander Sobczak, and Joachim M. Weitzel employed at the Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, declare that they have no competing financial interests.
We thank Birgit Westernstroeer of the Centre of Reproductive Medicine and Andrology at the University of Muenster for teaching the testicular microinjection. Besides, we are grateful to Ursula Antkewitz and Petra Reckling for technical assistance. We thank the German Research Foundation (DFG) for supporting this work (WE2458/10-1).
Name | Company | Catalog Number | Comments |
Centrifuge | Sigma | 1-15 PK | |
Spectrophotometer | Nanodrop | ND-1000 | |
Micropipette puller | Narishige | PC-10 | vertical capillary puller |
Microinjection capillaries | Clark | GC100-10 | borosilicate standard wall |
Micropipette beveler | Bachofer | Typ 462 | rotating disk beveler |
Electroporator | Nepagene | CUY 21EDIT | square wave electroporator |
Tweezer electrodes | Nepagene | CUY 650P5 | 5 mm Ø disk electrodes |
Stereo microscope | Zeiss | Stemi 2000-C | |
Cold light source | Zeiss | KL 1500LCD | |
Microinjection pump | Eppendorf | Femtojet | |
Micromanipulator | homemade | XYZ cross table | |
Surgical instruments | FST | scissors, forceps, needle holder | |
Fine forceps | FST | Dumont #5, #7 | efferent ducts preparation |
Michel clip applying stapler | FST | Michel, 12029-12 | |
Michel suture clips | FST | Michel, 12040-01 | 7.5 x 1.75 mm |
Surgical suture | Catgut, Markneukirchen, Germany | Catgut 00 | |
Syringe with 30 G needle | B. Braun | Omnican 40 | to load micropipette and for anesthesia |
Plasmid isolation kit | Promega | Cat. # A2495 | plasmid Midiprep |
Plasmid pEGFP-C1 | Clontech | Cat. #6084-1 | CMV-promoter + EGFP |
Plasmid pDsRed2-N1 | Clontech | Cat. #6084-1 | CMV-promoter + DsRed2 |
Fast Green dye | Sigma | F7258-25G | for dilution in ddH2O |
10% Ketamine | Serum Werk, Bernburg, Germany | Urotamin | mix in a rate 1:1 with xylazine |
2% Xylazine | Serum Werk, Bernburg, Germany | Xylazin | mix in a rate 1:1 with ketamine |
Sterilium | Bode Chemie | Sterillium | disinfection |
Vet ointment | S&K Pharma, GmbH | Kerato Biciron 5%, Augensalbe | opthalmic ointment to prevent eye dryness |
To-Pro-3 iodide | Invitrogen | T3605 | |
10x PBS, pH 7.4 | |||
1.37 M NaCl | Carl Roth | 3957.1 | |
Ibuprofen, Dolormin | Johnson & Johnson Consumer Health Care Germany | 01094902 | analgesic pediatric solution (NSAID) for postsurgery pain relief |
27 mM KCl | Carl Roth | 6781.1 | |
100 mM Na2HPO4·2H2O | Carl Roth | T106.2 | |
18 mM KH2PO4 | Carl Roth | 3904.1 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone