Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Platelet transfusion and hemostasis was modeled using blood reconstitution and microfluidic flow chambers to investigate the function of blood banking platelets. The data demonstrate the consequences of platelet storage lesion on hemostasis, in vitro.
Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion.
Hemostasis requires the combined and regulated activity of cells, proteins, ions and tissues in a restricted spatiotemporal context1. Uncontrolled activity may lead to hemorrhage or thrombosis and morbidity or mortality in a spectrum of disorders related to blood coagulation. A microfluidic flow chamber experiment is a challenging technique that mimics hemostasis in vitro. This approach allows investigation of the complex interplay of processes that take part in hemostasis with a leading role for blood platelets.
Following vascular injury, platelets adhere to the exposed subendothelial matrix (glyco)proteins to prevent blood loss. Following adhesion, platelets activate and aggregate in response to auto- and paracrine signaling which finally leads to the formation of a platelet network, stabilized by fibrin and resulting in a firm, wound sealing thrombus2. Unlike most other platelet function tests, experiments with flow chambers take into account the physical parameter of blood flow and therefore the influence of rheology on the participating cells and biomolecules3,4.
Flow chamber experiments have generated landmark insights in hemostasis and thrombosis by varying key parameters that influence hemostatic (sub)processes including the adhesive matrix, rheology and flow profiles, cellular composition, presence of toxins or drugs, ionic strength and many more. In the past two decades, low throughput flow chamber experiments requiring large sample volumes (10-100 ml) have evolved to microfluidic chambers often consisting of small parallel-plate chambers and including modern technology for perfusing whole blood at controlled wall shear conditions5. Microscaling has significantly increased assay throughput mostly because the hardware setup has simplified and less (blood) volume is required, rendering the experiment more accessible and versatile. For instance, blood from small laboratory animals can now be used without the need to sacrifice animals. Blood samples of genetically modified mice have thus aided in the identification of key molecules promoting or inhibiting hemostasis and in novel basic insights6.
Specialized research laboratories often still use custom made flow chambers for instance from polydimethylsiloxane (PDMS)7 that polymerizes on lithographed molds which can be blueprinted by software. The resulting chamber is inexpensive, disposable and can be easily disassembled for post hoc analysis. Furthermore, basically any design of vessels, including bifurcations or sharp turns can be built on command. This advantage is also its downside since standardization was already the primary problem with flow chamber experiments, and PDMS custom made chambers have not aided this. On top of this particular issue, coating (conditions), fluorescent probes, anticoagulant, temperature and time between sampling and analysis are all poorly standardized8. Standardization of these variables is challenging, but nonetheless required to permit comparison of results between laboratories. This topic is the major subject of the International Society on Thrombosis and Haemostasis in Scientific and Standardization subcommittee on Biorheology9,10.
Platelet concentrates (PC) are transfused in patients suffering from various diseases that cause thrombocytopenia and/or bleeding. But platelets in PC are known to desensitize, especially in function of storage time11, a deterioration process linked to ageing and commonly referred to as platelet storage lesion. It is sometimes claimed that such platelets restore in circulation once transfused12, but evidence for this is scarce. Furthermore, the functionality of platelets making up a PC is not routinely tested because the relationship between such assays and therapeutic or prophylactic efficacy is unclear13. Microfluidic flow chambers offer a means to investigate platelet function in PC to optimize the chain of manipulations between collection and issuing. It is a powerful research tool for direct (paired) comparisons of PC as we have previously published14,15 and is described here.
This protocol follows the institutional ethical guidelines for research on human samples and informed consent was obtained from all donors involved. Approval for the experiments described here was obtained from the institutional review board of the Antwerp University Hospital.
Note: Temperature indications are always room temperature, unless specified.
1. Preparation Flow Chamber Setup
2. Preparation of Blood Samples
3. Perfusion Assay
4. Wash Out
5. Data Analysis
To demonstrate intra-assay variation, three identical reconstituted whole blood samples were perfused simultaneously over collagen coated surfaces (Figure 1). This resulted in a coefficient of variation of 8.7%. This statistic suggests acceptable intra-assay and intralaboratory variation permitting reliable comparison between related samples.
The inlet of the commercial flow chamber we describe here is perpendic...
Microfluidic flow chamber experiments are an excellent tool to investigate platelet function in flowing blood and are used to evaluate hemostasis in vitro in varying experimental contexts. Despite poor interlaboratory standardization9, we demonstrate that within our laboratory the experimental variation is acceptable. This allows to reliably compare (paired) samples within a given study. This was validated using the well documented phenomenon of platelet storage lesion, which is a detrimental conseque...
The authors have nothing to disclose.
The authors have no acknowledgements.
Name | Company | Catalog Number | Comments |
BD vacutainer tube with EDTA | Becton, Dickinson and Company | 368856 | |
BD vacutainer tube with Heparin | Becton, Dickinson and Company | 368480 | |
BD vacutainer tube with Sodium Citrate | Becton, Dickinson and Company | 366575 | |
Hirudin Blood tube | Roche | 6675751 001 | |
BD vacutainer Eclipse | Becton, Dickinson and Company | 368650 | Blood collection needle with preattached holder |
Pipette tips 100-1,000 | Greiner bio-one | 740290 | |
Pipette tips 2-200 | Greiner bio-one | 739280 | |
Pipette tips 1-10 | Eppendorf | A08928 | |
Tube 5 ml | Simport | 11691380 | |
Conical tube 15 ml | Greiner bio-one | 1888271 | |
Conical tube 50 ml | Greiner bio-one | 227261 | |
10 ml Syringe | BD | 309604 | |
Precision wipes | Kimtech | 5511 | |
Vena8 Fluoro+ Biochips | Cellix | 188V8CF-400-100-02P10 | Named in Figure S1 A as 'Biochip' |
Vena8 Tubing | Cellix | TUBING-TYGON-B1IC-B1OC-ROLL 100F | Named in Figure S1 B as 'Disposable tubing' |
Vena8 Needles | Cellix | SS-P-B1IC-B1OC-PACK200 | Named in Figure S1 B as 'Pin' |
Connectors for single inlet cables of biochips | Cellix | CONNECTORS-B1IC-PACK100 | |
Multiflow8 connect | Cellix | MF8-CONNECT-BIC3-N-THROMBOSIS | Named in Figure S1 B as 'Reusable tubing' and 'Splitter' |
Humidified box | Cellix | HUMID-BOX | |
Software microfluidic pump | Cellix | N/A | Venaflux Assay |
Horm Collagen | Takeda/Nycomed | 1130630 | Native equine tendon collagen (type I) Isotonic glucose solution to dilute collagen is supplemented |
HEPES buffered saline (HBS) | in house preparation | in house preparation | 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered saline (0.9% (w/v) NaCl, pH 7.4) |
Blocking buffer | in house preparation | in house preparation | 1.0% (w/v) bovine serum albumin and 0.1% (w/v) glucose in HBS |
Calcein AM | Molecular probes | C1430 | |
Bleach 10% | in house preparation | in house preparation | |
0.1 M NaOH | in house preparation | in house preparation | |
Denaturated alcohol | Fiers | T0011.5 | |
Mirus Evo Nanopump | Cellix | 188-MIRUS-PUMP-EVO | with Multiflow8. Named in Figure S1 A as 'Pump' and 'Manifold' |
Microscope | Zeiss | Axio Observer Z1 | equipped with a colibri-LED and high resolution CCD camera |
Software microscope | Zeiss | N/A | ZEN 2012 |
Hematology analyzer | Sysmex | N/A | |
Table Top Centrifuge | Eppendorf | 521-0095 | |
Platelet incubater | Helmer | PF-48i | |
Incubation water bath | GFL | 1013 | |
Pipette | Brand | A03429 | |
Tube Roller | Ratek | BTR5-12V | |
Sterile docking device | Terumo BCT | TSCD | |
Tubing Sealer | Terumo BCT | AC-155 | |
Vortex | VWR | 58816-121 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone