Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This study describes biophysical, biochemical and molecular techniques to characterize the chaperone activity of Escherichia coli HdeB under acidic pH conditions. These methods have been successfully applied for other acid-protective chaperones such as HdeA and can be modified to work for other chaperones and stress conditions.
Bacteria are frequently exposed to environmental changes, such as alterations in pH, temperature, redox status, light exposure or mechanical force. Many of these conditions cause protein unfolding in the cell and have detrimental impact on the survival of the organism. A group of unrelated, stress-specific molecular chaperones have been shown to play essential roles in the survival of these stress conditions. While fully folded and chaperone-inactive before stress, these proteins rapidly unfold and become chaperone-active under specific stress conditions. Once activated, these conditionally disordered chaperones bind to a large number of different aggregation-prone proteins, prevent their aggregation and either directly or indirectly facilitate protein refolding upon return to non-stress conditions. The primary approach for gaining a more detailed understanding about the mechanism of their activation and client recognition involves the purification and subsequent characterization of these proteins using in vitro chaperone assays. Follow-up in vivo stress assays are absolutely essential to independently confirm the obtained in vitro results.
This protocol describes in vitro and in vivo methods to characterize the chaperone activity of E. coli HdeB, an acid-activated chaperone. Light scattering measurements were used as a convenient read-out for HdeB's capacity to prevent acid-induced aggregation of an established model client protein, MDH, in vitro. Analytical ultracentrifugation experiments were applied to reveal complex formation between HdeB and its client protein LDH, to shed light into the fate of client proteins upon their return to non-stress conditions. Enzymatic activity assays of the client proteins were conducted to monitor the effects of HdeB on pH-induced client inactivation and reactivation. Finally, survival studies were used to monitor the influence of HdeB's chaperone function in vivo.
A common natural environment in which microbial pathogens experience acid-induced protein unfolding conditions is the mammalian stomach (pH range 1-4), whose acidic pH serves as an effective barrier against food-borne pathogens 1. Protein unfolding and aggregation, which is caused by amino acid side chain protonation, affects biological processes, damages cellular structures and eventually causes cell death 1,2. Since the pH of the bacterial periplasm equilibrates almost instantaneously with the environmental pH due to the free diffusion of protons through the porous outer membrane, periplasmic and inner membrane proteins of Gram-negative bacteria are the most vulnerable cellular components under acid-stress conditions 3. To protect their periplasmic proteome against rapid acid-mediated damage, Gram-negative bacteria utilize the acid-activated periplasmic chaperones HdeA and HdeB. HdeA is a conditionally disordered chaperone 4,5: At neutral pH, HdeA is present as a folded, chaperone-inactive dimer. Upon a pH shift below pH 3, HdeA's chaperone function is quickly activated 6,7. Activation of HdeA requires profound structural changes, including its dissociation into monomers, and the partial unfolding of the monomers 6-8. Once activated, HdeA binds to proteins that unfold under acidic conditions. It effectively prevents their aggregation both during the incubation at low pH as well as upon pH neutralization. Upon return to pH 7.0, HdeA facilitates the refolding of its client proteins in an ATP-independent manner and converts back into its dimeric, chaperone-inactive conformation 9. Similarly, the homologous chaperone HdeB is also chaperone-inactive at pH 7.0. Unlike HdeA, however, HdeB's chaperone activity reaches its apparent maximum at pH 4.0, conditions under which HdeB is still largely folded and dimeric 10. Moreover, further lowering the pH causes the inactivation of HdeB. These results suggest that despite their extensive homology, HdeA and HdeB differ in their mode of functional activation allowing them to cover a broad pH range with their protective chaperone function. One other chaperone that has been implicated in the acid resistance of E. coli is the cytoplasmic Hsp31, which appears to stabilize unfolded client proteins until neutral conditions are restored. The precise mode of Hsp31's action, however, has remained enigmatic 12. Given that other enteropathogenic bacteria such as Salmonella lack the hdeAB operon, it is very likely that other yet unidentified periplasmic chaperones might exist that are involved in acid resistance of these bacteria 11.
The protocols presented here allow to monitor the pH-dependent chaperone activity of HdeB in vitro and in vivo 10 and can be applied to investigate other chaperones such as Hsp31. Alternatively, the complex network of transcription factors that control the expression of hdeAB can potentially be investigated by the in vivo stress assay. To characterize the chaperone function of proteins in vivo, different experimental setups can be applied. One route is to apply protein unfolding stress conditions and phenotypically characterize mutant strains that either overexpress the gene of interest or carry a deletion of the gene. Proteomic studies can be conducted to identify which proteins no longer aggregate under stress conditions when the chaperone is present, or the influence of a chaperone on a specific enzyme can be determined during stress conditions using enzymatic assays 14-16. In this study, we chose to overexpress HdeB in an rpoH deletion strain, which lacks the heat shock sigma factor 32. RpoH controls the expression of all major E. coli chaperones and its deletion is known to increase sensitivity to environmental stress conditions that cause protein unfolding 15. The in vivo chaperone activity of HdeB was determined by monitoring its ability to suppress the pH sensitivity of the ΔrpoH strain. Altogether, the protocols presented here provide a fast and straightforward approach to characterize the activity of an acid-activated chaperone in vitro as well as in the in vivo context.
1. Expression and Purification of Periplasmic HdeB
NOTE: HdeB was expressed in E. coli cells harboring the plasmid pTrc-hdeB10, and purified from the periplasm upon polymyxin lysis.
2. Chaperone Activity Assay Using Thermally Unfolding Malate Dehydrogenase (MDH)
NOTE: The influence of purified HdeB on the aggregation of thermally unfolding porcine mitochondrial malate dehydrogenase (MDH) at different pH values was monitored as described below. All listed protein concentrations refer to the monomer concentration.
3. Detection of HdeB-LDH Complex Formation by Analytical Ultracentrifugation (aUC)
NOTE: Sedimentation velocity experiments of HdeB alone or in complex with thermally unfolding lactate dehydrogenase (LDH) were performed using an analytical ultracentrifuge.
4. Monitoring MDH Inactivation and Reactivation in the Presence of HdeB
NOTE: The influence of purified HdeB on the refolding of pH-unfolded MDH was determined by monitoring MDH activity upon neutralization.
5. Effect of HdeB Overexpression on E. coli Survival under Acid Stress
NOTE: E. coli MG1655 genomic DNA was isolated using a published protocol 21.
HdeA and HdeB are homologous E. coli proteins, known to protect periplasmic proteins against acid stress conditions 10. Our work revealed that similar to HdeA, HdeB also functions as an acid activated molecular chaperone. However, in contrast to HdeA, HdeB functions at a pH that is still potentially bactericidal, but significantly higher than the pH optimum of HdeA 6,9,10,22. To investigate the pH optimum of HdeB's chaperone activity in vitro, n...
In order to study the mechanism of activation and chaperone function of HdeB, large quantities of HdeB have to be expressed and purified. A number of expression vector systems are available for the production of high levels of a target protein, including pTrc or pBAD vectors, both of which were used in this study. The promoters are readily accessible for E. coli RNA polymerase and thus allow strongly upregulated expression of HdeB in any E. coli strain. This aspect is especially relevant for in vivo...
The authors have nothing to disclose
We thank Dr. Claudia Cremers for her helpful advice on chaperone assays. Ken Wan is acknowledged for his technical assistance in HdeB purification. This work was supported by the Howard Hughes Medical Institute (to J.C.A.B.) and the National Institutes of Health grant RO1 GM102829 to J.C.A.B. and U.J. J.-U. D. is supported by a postdoctoral research fellowship provided by the German Research Foundation (DFG).
Name | Company | Catalog Number | Comments |
NEB10-beta E. coli cells | New England Biolabs | C3019I | |
Ampicillin | Gold Biotechnology | A-301-3 | |
LB Broth mix, Lennox | LAB Express | 3003 | |
IPTG | Gold Biotechnology | I2481C50 | |
Sodium chloride | Fisher Scientific | S271-10 | |
Tris | Amresco | 0826-5kg | |
EDTA | Fisher Scientific | BP120-500 | |
Polymyxin B sulfate | ICN Biomedicals Inc. | 100565 | |
0.2 µm pore sterile Syringe Filter | Corning | 431218 | |
HiTrap Q HP (CV 5 ml) | GE Healthcare Life Sciences | 17-1153-01 | |
Mini-Protean TGX, 15% | Bio-Rad | 4561046 | |
Malate dehydrogenase (MDH) | Roche | 10127914001 | |
Potassium phosphate (Monobasic) | Fisher Scientific | BP362-500 | |
Potassium phosphate (Dibasic) | Fisher Scientific | BP363-1 | |
F-4500 fluorescence spectrophotometer | Hitachi | FL25 | |
Oxaloacetate | Sigma | O4126-5G | |
NADH | Sigma | N8129-100MG | |
Sodium phosphate monobasic | Sigma | S9390-2.5KG | |
Sodium phosphate dibasic | Sigma | S397-500 | |
Lactate dehydrogenase (LDH) | Roche | 10127230001 | |
Beckman Proteome Lab XL-I analytical Ultracentrifuge | Beckman Coulter | 392764 | |
Centerpiece, 12 mm, Epon Charcoal-filled | Beckman Coulter | 306493 | |
AN-50 Ti Rotor, Analytical, 8-Place | Beckman Coulter | 363782 | |
Wizard Plus Miniprep Kit | Promega | A1470 | used for plasmid purification (Protocol 5.1) |
L-arabinose | Gold Biotechnology | A-300-500 | |
Glycine | DOT Scientific Inc | DSG36050-1000 | |
Fluorescence Cell cuvette | Hellma Analytics | 119004F-10-40 | |
Oligonucleotides | Invitrogen | ||
Phusion High-Fidelity DNA polymerase | New England Biolabs | M0530S | |
dNTP set | Invitrogen | 10297018 | |
Hydrochloric Acid | Fisher Scientific | A144-212 | |
Sodium Hydroxide | Fisher Scientific | BP359-500 | |
Amicon Ultra 15 ml 3K NMWL | Millipore | UFC900324 | |
Centrifuge Avanti J-26XPI | Beckman Coulter | 393127 | |
Varian Cary 50 spectrophotometer | Agilent Tech | ||
Spectra/Por 1 Dialysis Membrane MWCO: 6 kDa | Spectrum Laboratories | 132650 | |
Amicon Ultra Centrifugal Filter Units 30K | Millipore | UFC803024 | |
SDS | Fisher Scientific | bp166-500 | |
Veriti 96-Well Thermal Cycler | Thermo Fisher | 4375786 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone