Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
This article presents a method for the detection and quantification of organic acids from plant material using free zonal capillary electrophoresis. An example of the potential application of this method, determining the effects of a secondary fermentation on organic acid levels in coffee seeds, is provided.
Carboxylic acids are organic acids containing one or more terminal carboxyl (COOH) functional groups. Short chain carboxylic acids (SCCAs; carboxylic acids containing three to six carbons), such as malate and citrate, are critical to the proper functioning of many biological systems, where they function in cellular respiration and can serve as indicators of cell health. In foods, organic acid content can have significant impact on taste, with increased SCCA levels resulting in a sour or "acid" taste. Because of this, methods for the rapid analysis of organic acid levels are of particular interest to the food and beverage industries. Unfortunately, however, most methods used for SCCA quantification are dependent on time-consuming protocols requiring the derivatization of samples with hazardous reagents, followed by costly chromatographic and/or mass spectrometric analyses. This method details an alternate method for the detection and quantification of organic acids from plant material and food samples using free zonal capillary electrophoresis (CZE), sometimes simply referred to as capillary electrophoresis (CE). CZE provides a cost-effective method for measuring SCCAs with a low limit of detection (0.005 mg/ml). This article details the extraction and quantification of SCCAs from plant samples. While the method provided focuses on measurement of SCCAs from coffee beans, the method provided can be applied to multiple plant-based food materials.
Carboxylic acids are organic compounds containing one or more terminal carboxyl functional groups, each attached to an R-group containing one or more carbons (R-C[O]OH). Short chain, low molecular weight carboxylic acids (short chain carboxylic acids, SCCAs) containing between one and six carbons, are essential components of cellular respiration, and function in several biochemical pathways necessary for cell growth and development. SCCAs play critical roles in cellular metabolism1, cell signaling2, and organismal responses to the environment (such as antibiosis3). Because of this, SCCAs can serve as useful indicators of disruptions to cellular metabolism, plant stress responses4,5, and fruit quality6,7. To date, SCCAs have been quantified primarily through chromatographic techniques such as high performance liquid chromatography (HPLC) or gas chromatography-mass spectroscopy (GC-MS). While these methods, are capable of achieving very low limits of detection, they can be expensive, require the derivatization of target SCCAs using caustic and/or toxic reagents, and include lengthy separation runs on the GC or HPLC. Because of this, interest in the use of free zonal capillary electrophoresis (CZE), which does not require sample derivatization, to quantify organic acids has steadily increased8.
Free zonal capillary electrophoresis (CZE) is a chromatographic separation methodology that, due to its high number of theoretical plates, speed, and relative ease-of-use, is increasingly replacing both GC-MS and high-pressure liquid chromatography as an analytical method for the quantification (particularly for quality control purposes) of anions, cations, amino acids, carbohydrates, and short chain carboxylic acids (SCCAs)8,9,10. CZE-based separation of small molecules, including SCCAs, is based two primary principles: the electrophoretic movement of charged ions in an electrical field established across the buffer filling the capillary; and the electro-osmotic movement of the entire buffer system from one end of the capillary to the other, generally towards the negative electrode. In this system, small molecules move towards the negative electrode at varying speeds, with the speed of each molecule determined by the ratio of the net charge of the molecule to the molecular mass. As the movement of each individual molecule in this system is dependent on the charge state of the molecule and the overall rate of electro-osmotic flow (which is itself based on the ion content of the buffer used to fill the capillary), the buffer pH and ionic composition heavily impact the degree to which molecules can be efficiently separated using CZE. Because of this, SCCAs, with their relatively high charge-to-mass ratios, are ideal targets for CZE-based separation. Metabolites separated using CZE can be detected using a variety of methods, including UV absorbance, spectral absorbance (which is generally performed using a photo-diode array [PDA]), and/or mass spectroscopy (CE-MS or CE-MS/MS)8. The diversity of separation and detection methods provided by CZE makes it an extremely flexible and adaptable technique. Because of this, CZE has been increasingly applied as a standard method of analysis in the areas of food safety and quality11,12, pharmaceutical research13, and environmental monitoring13,14.
Capillary electrophoresis has been used to detect and quantify short chain carboxylic acids for nearly two decades13. The resolving power (particularly for small, charged molecules), short run time, and low per sample cost of CZE analyses make CZE an ideal technique for the separation and quantification of SCCAs13. This method presents a protocol to utilize CZE to measure the concentration of organic acids from plant tissues. Example data was generated through the successful implementation of this protocol to measure the change in organic acid levels in coffee seeds following a secondary fermentation treatment. The protocol details the critical steps and common errors of CZE-based separation of SCCAs, and discusses the means by which this protocol can be successfully applied to quantify SCCAs in additional plant tissues.
1. Sample Preparation
2. Organic Acid Standard Preparation
3. Organic Acid Extraction
4. Setting Up the SCCA Detection Run
Table 1: Conditioning method program used to prepare the capillary for short chain carboxylic acid separation via capillary electrophoresisa.
Table 2: Separation method program used to analyses short chain carboxylic acids via capillary electrophoresisa.
5. SCCA Detection Run Execution and Data Collection
Figure 1: A comparison of PDA traces highlighting an overloaded sample. As analyte concentration increases, individual peak geometry may begin to become asymmetric. At (a) 0.05 mg/ml, acetic acid presents a well-defined, bilaterally symmetrical peak. As the concentration of acetic acid increases to (b) 0.07 mg/ml and (c) 0.10 mg/ml, a peak tail forms (arrows). This peak tailing is a good indication that the sample is overloaded. Please click here to view a larger version of this figure.
6. Data Analysis
This protocol has been successfully utilized to measure the effects of seed treatments on the SCCA content of green coffee seeds. In this experiment, the six treatments were: a saturated microbial suspension of Leuconostoc pseudomesenteroides strain GCP674 in its growth medium (1), an aqueous suspension of GCP674 microbes in water (2), an aqueous solution of acetic and lactic acids (0.15 and 0.4 mg/ml respectively) (3), a spent M1 growth medium treatment (4), dH2O wate...
As with any analytical technique, there are several critical factors that can significantly impact the quality and reliability of the data generated. First, it is important to process samples efficiently, with a minimum of freeze/thaw cycles. Repeated freezing and thawing can compromise the chemical composition of the sample before processing or analysis. Second, it is critical to apply the steps of this protocol to all samples consistently and evenly. Technical errors arising from inconsistent sample preparation and han...
The authors declare that they have no competing financial interests.
The authors would like to acknowledge the financial support of this project by The J.M. Smucker company.
Name | Company | Catalog Number | Comments |
Ceramic Moarter and Pestle | Coorstek | 60310 | |
Beckman Coulter P/ACE MDQ CE system | Beckman Coulter | Various | |
Glass sample vials | Fisher Inc. | 033917D | |
1.5 ml microcentrifuge tubes | Fisher Inc. | 02-681-5 | |
LC/MS grade water | Fisher Inc. | W6-1 | Milli-Q water (18.2 MΩ.cm) is also acceptable |
15 ml glass tube/ Teflon lined cap | Fisher Inc. | 14-93331A | |
Parafilm M | Fisher Inc. | 13-374-12 | |
CElixirOA detection Kit pH 5.4 | MicroSolv | 06100-5.4 | |
BD Safety-Lok syringes | Fisher Inc. | 14-829-32 | |
17 mm Target Syringe filter, PTFE | Fisher Inc. | 3377154 | |
32 Karat, V. 8.0 control software | Beckman Coulter | 285512 | |
capillary electrophoresis (CE) sample vials | Beckman Coulter | 144980 | |
caps for CE vials | Beckman Coulter | 144648 | |
Liquid Nitrogen | N/A | N/A | Liquid nitrogen is available from most facilities services |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone