JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We have developed a modular high-throughput screening system for discovering novel compounds against Mycobacterium tuberculosis, targeting intracellular and in-broth growing bacteria as well as cytotoxicity against the mammalian host cell.

Streszczenie

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a leading cause of morbidity and mortality worldwide. With the increased spread of multi drug-resistant TB (MDR-TB), there is a real urgency to develop new therapeutic strategies against M. tuberculosis infections. Traditionally, compounds are evaluated based on their antibacterial activity under in vitro growth conditions in broth; however, results are often misleading for intracellular pathogens like M. tuberculosis since in-broth phenotypic screening conditions are significantly different from the actual disease conditions within the human body. Screening for inhibitors that work inside macrophages has been traditionally difficult due to the complexity, variability in infection, and slow replication rate of M. tuberculosis. In this study, we report a new approach to rapidly assess the effectiveness of compounds on the viability of M. tuberculosis in a macrophage infection model. Using a combination of a cytotoxicity assay and an in-broth M. tuberculosis viability assay, we were able to create a screening system that generates a comprehensive analysis of compounds of interest. This system is capable of producing quantitative data at a low cost that is within reach of most labs and yet is highly scalable to fit large industrial settings.

Wprowadzenie

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a leading cause of morbidity and mortality worldwide. Drug-sensitive TB is a treatable disease that requires multiple antibiotics for a period of 6 months. Despite being a treatable disease, TB mortality was estimated to be 1.5 million in 20151. In the past 10 years, there have been increasing concerns over the prevalence of drug-resistant M. tuberculosis. Multidrug-resistant TB (MDR-TB) is defined as TB that is resistant to at least Isoniazid (INH) and Rifampicin (RMP), and most MDR-TB strains are also resistant to select second-line TB drugs, thus limiting treatment options. The effects of drug resistance create a greater challenge for treating patients co-infected with Human Immunodeficiency Virus (HIV); 400,000 patients worldwide died of HIV-associated TB in 20151. Disappointingly, the United States Food and Drug Administration has approved only one new TB drug against MDR-TB, bedaquiline, in the past 40 years2. Advances in finding better and shorter TB therapies are urgently needed in order to stay ahead in the fight against TB and MDR-TB.

Traditionally, TB drug screens are performed under in vitro growth conditions in growth medium, whereby compounds are added to a growing culture and their effectiveness in eradicating the microorganisms are determined by counting colony forming units (CFU) on solid medium. As CFU counts are labor intensive, time consuming, and costly, various indirect methods have been developed to alleviate this problem. Such methods include the Alamar Blue viability assay3, the determination of fluorescence4 from green fluorescent protein (GFP) or luminescence5 from luciferase-expressing bacteria, and the estimation of total adenosine triphosphate (ATP)6,7.

Typical TB is characterized by an M. tuberculosis infection of the lung, where the bacteria reside and replicate inside the phagosomes of alveolar macrophages8. The simple in-broth phenotypic screen may suit extracellular pathogens; however, in the historical perspective, hit compounds against M. tuberculosis identified using this method often fail to live up to expectations during downstream validation steps in infection models. We propose that TB drug is best performed in an intracellular host cell infection model. Nevertheless, intracellular models possess many technological and biological barriers to high-throughput screening (HTS) development. A big hurdle is the complexity of the infection process, exemplified by numerous steps and the elaborate removal of extracellular bacteria by in-between washing. A second major hurdle is the lengthy time requirements, as growth detection, normally done by CFU counting on culture plates, is a process that takes over 3 weeks to complete. One solution to replace CFU counts has been provided by automated fluorescent microscopy in combination with fluorescent bacteria. However, this solution requires an initial equipment investment that is out of reach for many research labs. A simple, low-cost, and disease-relevant HTS method would greatly enhance the drug discovery process.

In this study, we report a new, modular HTS system that is aimed at providing a rapid, and highly scalable, yet economical, assay suitable for determining the activity of compounds against intracellular M. tuberculosis. This system is composed of three modules: (i) intracellular, (ii) cytotoxicity, and (iii) in-broth assays. The combined final result provides a comprehensive description of the compound properties, with additional information as to the potential mode of action. This screening system has been used in several projects with various compound libraries that target mode of action, including the analysis of drug synergy9, the stimulation of autophagy10, and the inhibition of M. tuberculosis-secreted virulence factor (unpublished). Compounds of unknown mode of action have also been studied11. A modified version of this method was also adopted by our industrial partner as the primary screening method to identify new compounds against intracellular M. tuberculosis11.

Access restricted. Please log in or start a trial to view this content.

Protokół

1. Bacterial Strain and Growth Medium

  1. Make albumin dextrose and salt stock solution (ADS) by solubilizing 25 g of bovine serum albumin, 10.0 g of dextrose, and 4.05 g of sodium chloride in 460 mL of deionized water. Filter-sterilize the ADS and store at 4 °C.
  2. Make 7H9 broth by adding 4.7 g of 7H9 powder and 2 mL of glycerol to 900 mL of purified water. Autoclave the 7H9 broth at 121 °C for 10 min and allow it to cool to room temperature before proceeding. Make 7H9ADST by adding 100 mL of ADS and 0.5 mL of Tween80 to 900 mL of 7H9 broth. Store at 4 °C.
  3. Weigh 50 mg of kanamycin sulfate and dissolve in 1 mL of deionized water; the final concentration is 50 mg/mL. Filter-sterilize and store at -20 °C. Add 0.5 mL of kanamycin stock solution per 1 L of 7H9ADST.
    NOTE: This medium should be made fresh, so scale the volumes appropriately according to the culture size.
  4. Grow M. tuberculosis in 7H9ADST supplemented with kanamycin in standing culture. Shake the culture daily and dilute it before the OD600 reaches 1.0 to avoid clumping.
    ​NOTE: The M. tuberculosis strain used for the development of this method was H37Rv transformed with pJAK2.A plasmid12. pJAK2.A is an integrative plasmid based on the pMV361 vector, which allows high-level expression of the firefly luciferase gene from the hsp60 promoter and can be selected using kanamycin.

2. THP-1 Medium and Maintenance

  1. Add 50 mL of heat-inactivated fetal bovine serum (FBS) and 5 mL of 200 mM L-glutamine to 500 mL of RPMI 1640 to make RPMI incomplete medium (approximately 10% FBS and 2 mM glutamine).
  2. Maintain an THP-1 cell culture according to standard protocol13. Briefly, grow THP-1 cells in RPMI incomplete medium while maintaining a cell density of 0.2 to 1 million per mL of medium between passages.

3. High-throughput Intracellular Screening Using Luciferase-expressing M. tuberculosis H37Rv

  1. Measure the optical density of an actively growing bacterial suspension in a spectrophotometer at a wavelength of 600 nm. Calculate the bacterial density using the conversion factor of 0.1 OD600 = 3 x 107 bacteria per mL.
  2. Pipette out sufficient bacteria for a multiplicity of infection (MOI) of 10:1 into a new centrifuge tube. Pellet at 3,000 x g for 10 min and aspirate the liquid. Add 50 µL of human serum to 450 µL of RPMI1640. Scale the volume to appropriate values for the experiment.
  3. To opsonize the bacteria, resuspend the pellet at a density of 1 x 108 bacteria per 500 µL of RPMI1640 containing 10% human serum. Allow the mixture to incubate at 37 °C for 30 min. Determine the THP-1 cell culture density by counting with a hemocytometer and an inverted microscope.
  4. Pellet the cells in sterile centrifuge tubes at 100 x g and 37 °C for 10 min. Aspirate the supernatant and resuspend the cells in RPMI incomplete at a density of 1 million cells per mL. Add phorbol-12-myristate-13-acetate (PMA) to a 40 ng/mL final concentration.
    NOTE: This will be referred to as the differentiation mix.
  5. Combine opsonized M. tuberculosis with THP-1 differentiation mix at a MOI of 10:1 and aliquot the final mix at 100 µL per well in a 96-well flat-bottom white plate. Regularly stir the mixture to ensure uniformity. Allow the differentiation and infection to proceed overnight at 37 °C in a humidified incubator containing 5% CO2.
  6. Wash the wells twice with 100 µL of RPMI each. Add compounds diluted to the desired concentrations in RPMI incomplete and incubate for 3 days.
  7. Aspirate the medium from the wells. Add 50 µL of luciferase assay reagent to each well. Seal the plates with transparent adhesive plate sealers. Allow 5 min of incubation at 22 °C and then obtain a readout in a luminometer at 1 s per well.

4. Cytotoxicity Analysis Using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Assay14

  1. Differentiate THP-1 cells in RPMI incomplete supplemented with 40 ng/mL of PMA in clear 96-well plates. Maintain a cell density of 1 million per mL and aliquot 100 µL per well. Allow differentiation to proceed overnight at 37 °C in a humidified incubator containing 5% CO2 .
  2. Aspirate the medium from the wells and wash them twice with RPMI 1640. Add compounds diluted in RPMI incomplete to the wells. Incubate for 3 days.
  3. Dissolve 0.5 g of MTT in 100 mL of phosphate-buffered saline (PBS) to make a stock solution of 5 mg/mL. Sterile filter and store at -20 °C, away from light; it is best to make this solution fresh.
  4. 2.5 h before the end of the 3-day incubation period, add 25 µL of MTT solution to each well and complete the incubation period.
  5. Prepare 50% N,N-dimethyl formamide (DMF) by mixing 250 mL of DMF with 250 mL of deionized water.
  6. Prepare MTT extraction buffer as follows: Weigh 100 g of SDS in a 500-mL bottle and add 300 mL of 50% DMF. Apply low heat to allow the SDS to dissolve. Add 10 mL of pure acetic acid and 12.5 mL of 1 M HCl. Fill up to the 500-mL mark with 50% DMF; the final composition of the extraction buffer is 50% DMF, 20% SDS, 2.5% acetic acid, and 2.5% 1 M hydrochloric acid.
  7. At the end of the treatment period, add 100 µL of extraction buffer (warmed to 45 °C to dissolve any crystals) to each well. Allow the mixture to incubate overnight at 37 °C in a humidified incubator containing 5% CO2. Read the absorbance at 570 nm.
    ​NOTE: The cytotoxicity assay is best performed in parallel with an intracellular screen using same-batch and age of THP-1 cells.

5. In-broth Activity Analysis Using a Resazurin Assay3

  1. Grow M. tuberculosis in 7H9ADST to the mid-log phase (~ 0.5 - 0.8 OD600). Dilute the culture with the 7H9ADST to 0.01 OD600. Dilute the compounds in 7H9ADST to 2x the testing concentrations and aliquot 100 µL of each diluted compound into each well.
  2. Transfer 100 µL of the diluted bacterial suspension into each well. Allow the plates to incubate at 37 °C in a humidified incubator for 5 days. Dissolve 10 mg of resazurin in 100 mL of deionized water and sterile filter.
  3. Add 30 µL of resazurin solution and monitor the color change after 48 h; bacterial growth is indicated by a color conversion from blue to pink.
    NOTE: A quantitative analysis can also be performed by measuring either the fluorescence at 590 nm with excitation at 530 - 560 nm or the absorbance at 570 nm and 600 nm15.

Access restricted. Please log in or start a trial to view this content.

Wyniki

High-throughput intracellular screening using M. tuberculosis expressing the luciferase gene

Figure 2A and Table 1 contain the raw data collected by the luminometer, expressed in relative luminescent units (RLU), showing the effect of an increasing concentration of the TB drug rifampicin on M. tuberculosis inside THP-1 cells. Figure 2A is a scatter plot of the raw...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

The goal of this study was to create a simple and cost-effective HTS method using a human intracellular infection model for M. tuberculosis. Tuberculosis is a human disease characterized by the infection of alveolar macrophages by M. tuberculosis. Due to biosafety issues, research involving biological models of both the bacterium and the host cells has been used in the past. However, it has been shown that the usage of surrogate bacteria and non-human models are poor predictors of hit-to-lead success in...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors declare no competing financial interests for this work.

Podziękowania

This work was supported by BC Lung Association and Mitacs.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
RPMI 1640Sigma-AldrichR5886
L-glutamineSigma-AldrichG7513
Fetal bovine serum (FBS)Thermo Fisher Scientific12483020
Middlebrook 7H9Becton, Dickinson and Company271210
Tween80Fisher ScientificT164
Albumin, Bovine pH7Affymetrix10857
DextroseFisher ScientificBP350
Sodium ChlorideFisher ScientificBP358
kanamycin sulfateFisher ScientificBP906
PMASigma-AldrichP8139
MTTSigma-AldrichM2128
N,N-Dimethylformamide (DMF)Fisher ScientificD131
1 M Hydrocholoric acid (HCl)Fisher Scientific351279212
Acetic acidFisher Scientific351269
SDSFisher ScientificBP166
ResazurinAlfa AesarB21187
DMSOSigma-AldrichD5879
GlycerolFisher ScientificBP229
THP-1American Type Culture CollectionTIB-202
M. tuberculosis H37Rv
96-well flat bottom white plateCorning3917
95-well flat bottom clear plateCorning3595
Transparent plate sealerThermo Fisher ScientificAB-0580
SpectrophotometerThermo Fisher ScientificBiomate 3
Microplate spectrophotometerBiotekEpoch
luminometerApplied BiosystemsTropix TR717

Odniesienia

  1. WHO. Global tuberculosis report 2015. , WHO. (2016).
  2. USFDA. FDA news realease. , Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333695.htm (2012).
  3. Yajko, D. M., et al. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol. 33, 2324-2327 (1995).
  4. Khare, G., Kumar, P., Tyagi, A. K. Whole-cell screening-based identification of inhibitors against the intraphagosomal survival of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 57, 6372-6377 (2013).
  5. Andreu, N., Fletcher, T., Krishnan, N., Wiles, S., Robertson, B. D. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J Antimicrob Chemother. 67, 404-414 (2012).
  6. Mak, P. A., et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol. 7, 1190-1197 (2012).
  7. Pethe, K., et al. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun. 1, 57(2010).
  8. Hmama, Z., Pena-Diaz, S., Joseph, S., Av-Gay, Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 264, 220-232 (2015).
  9. Ramon-Garcia, S., et al. Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother. 55, 3861-3869 (2011).
  10. Lam, K. K., et al. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog. 8, e1002691(2012).
  11. Sorrentino, F., et al. Development of an Intracellular Screen for New Compounds Able To Inhibit Mycobacterium tuberculosis Growth in Human Macrophages. Antimicrob Agents Chemother. 60, 640-645 (2015).
  12. Sun, J., et al. A broad-range of recombination cloning vectors in mycobacteria. Plasmid. 62, 158-165 (2009).
  13. ATCC. THP-1 (ATCC TIB-202). , Manassas. https://www.atcc.org/products/all/TIB-202.aspx (2016).
  14. Hansen, M. B., Nielsen, S. E., Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 119, 203-210 (1989).
  15. Invitrogen. AlamarBlue assay. , Invitrogen. (2008).
  16. Handbook of anti-tuberculosis agents. Introduction. Tuberculosis (Edinb). 88 (2), 85-86 (2008).
  17. Riss, T. L., et al. Cell Viability Assays. , (2004).
  18. Meyer, M., et al. In vivo efficacy of apramycin in murine infection models. Antimicrob Agents Chemother. 58, 6938-6941 (2014).
  19. Ballell, L., et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem. 8, 313-321 (2013).
  20. Grundner, C., Cox, J. S., Alber, T. Protein tyrosine phosphatase PtpA is not required for Mycobacterium tuberculosis growth in mice. FEMS Microbiol Lett. 287, 181-184 (2008).
  21. Wong, D., Bach, H., Sun, J., Hmama, Z., Av-Gay, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A. 108, 19371-19376 (2011).
  22. Bach, H., Papavinasasundaram, K. G., Wong, D., Hmama, Z., Av-Gay, Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 3, 316-322 (2008).
  23. Chanput, W., Peters, V., Wichers, H. The Impact of Food Bioactives on Health: in vitro and ex vivo models. , Springer International Publishing. 147-159 (2015).
  24. Maess, M. B., Wittig, B., Lorkowski, S. Highly efficient transfection of human THP-1 macrophages by nucleofection. J Vis Exp. , e51960(2014).
  25. Ferguson, J. S., Weis, J. J., Martin, J. L., Schlesinger, L. S. Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun. 72, 2564-2573 (2004).
  26. Andreu, N., et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One. 5, e10777(2010).
  27. Queval, C. J., et al. A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening. J Vis Exp. , e51114(2014).
  28. Christophe, T., et al. High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5, e1000645(2009).
  29. Pethe, K., et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med. 19, 1157-1160 (2013).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Mycobacterium TuberculosisIntracellular InfectionMacrophagesLuciferase AssayCytotoxicityMICDrug DevelopmentTHP1 CellsOpsonizationMOIDifferentiation96 well PlateCompound Screening

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone