Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A modified density centrifugation gradient-based methodology was utilized to isolate epithelial cells from Rhipicephalus microplus gut tissue. Surface-bound proteins were biotinylated and purified through streptavidin magnetic beads for utilization in downstream applications.
Rhipicephalus microplus – the cattle tick – is the most significant ectoparasite in terms of economic impact on livestock as a vector of several pathogens. Efforts have been dedicated to the cattle tick control to diminish its deleterious effects, with focus on the discovery of vaccine candidates, such as BM86, located on the surface of the tick gut epithelial cells. Current research focuses upon the utilization of cDNA and genomic libraries, to screen for other vaccine candidates. The isolation of tick gut cells constitutes an important advantage in investigating the composition of surface proteins upon the tick gut cells membrane. This paper constitutes a novel and feasible method for the isolation of epithelial cells, from the tick gut contents of semi-engorged R. microplus. This protocol utilizes TCEP and EDTA to release the epithelial cells from the subepithelial support tissues and a discontinuous density centrifugation gradient to separate epithelial cells from other cell types. Cell surface proteins were biotinylated and isolated from the tick gut epithelial cells, using streptavidin-linked magnetic beads allowing for downstream applications in FACS or LC-MS/MS-analysis.
Rhipicephalus microplus, the cattle tick, is the most significant ectoparasite in terms of economic impact on the cattle industry of tropical and sub-tropical regions as it vectors bovine tick fever (babesiosis), anaplasmosis and equine piroplasmosis1,2,3,4. Efforts have been dedicated to cattle tick control, to diminish the deleterious effect, however conventional methods such as the use of chemical acaricides have implicit drawbacks, such as the presence of chemical residues in milk and meat, and the increase in prevalence of chemically resistant ticks5,6,7. Consequently, the development of alternative methods of tick control have been studied, such as the use of natural resistance cattle, biological control (biopesticides) and vaccines4,5,6,7,8,9.
In the pursuit of proteins capable of being utilized as vaccine candidates, current research is focused upon the tick gut. The midgut wall is built from a single layer of epithelial cells resting on a thin basal lamina, with the outside of the basal lamina forming a network of muscle. Light and electron microscope observations indicate that the midgut consists of three types of cells: reserve (undifferentiated), secretory, and digestive. The number of cell types varies considerably depending upon the physiological phase. Secretory and digestive cells both originate from reserve cells18,19,20.
The construction of cDNA libraries to examine the composition of the tick gut has led to the identification of antigenic proteins, such as Bm86, as potential vaccine candidates2,3,4. The glycoprotein Bm86 is localized at the surface of tick gut cells and induces a protective immune response against the cattle tick (R. microplus) in vaccinated cattle. Anti-Bm86 IgGs produced by the immunized host are ingested by the tick, recognize this antigen on the surface of tick gut cells, and subsequently disturb tick gut tissue function and integrity. Vaccines based upon Bm86 antigens have shown effective control of R. microplus and Rhipicephalus annulatus, by reducing the number, weight and reproductive capacity of engorging females, resulting in a reduced larval infestation in subsequent tick generations4. However, Bm86 based vaccines are not effective against all tick stages and have demonstrated unsatisfactory efficacy against some geographical strains of R. microplus, consequently the beef and dairy industries have poorly adopted these vaccines2,4.
The ability to isolate epithelial cells from the tick gut is a significant innovation which would enable the progression of research to determine protein membrane composition including morphology and physiology under different environmental conditions. The method described here utilizes the chelating agent ethylenediaminetetraacetic acid (EDTA) and the reducing agent tris(2-carboxyethyl)phosphine (TCEP) to release the epithelium from its sub-epithelial support tissues10. The epithelium is recovered following mechanical disruption of the tissues by shaking, followed by discontinuous gradient centrifugation in Percoll. This paper describes a feasible and novel technique for the isolation of tick gut epithelial cells. Biotinylated cell surface proteins, isolated from the surface of these epithelial cells can subsequently analyzed in downstream applications such as FACS and/or LC-MS/MS-analysis.
Access restricted. Please log in or start a trial to view this content.
1. Dissection of the Gut Epithelium from R. microplus
2. Epithelial Cell Dissociation
3. Isolation of Single Epithelial Cells using a density centrifugation gradient
4. Assessment of Cell Isolation
5. Cell Surface Protein Biotinylation
6. Isolation of Biotinylated Surface Proteins
7. Assessment of Biotinylated Surface Protein
Access restricted. Please log in or start a trial to view this content.
Epithelial cells were isolated from the gut tissues of R. microplus as per the schematic presented in Figure 1. Representative fluorescence microscopy imagery of tick gut epithelial cells prepared using this protocol are shown in Figure 2A and 2B. As the cell isolation is conducted upon semi-engorged R. microplus, cells appear as singular, spher...
Access restricted. Please log in or start a trial to view this content.
Cattle tick infestations constitute a major problem for the cattle industry in tropical and subtropical regions of the world, with the most common method of control reliant upon the use of acaricides1,4. Bm86 was previously identified within the tick gut epithelial surface as a protective antigen against R. microplus infestation10, with limited success as a vaccine strategy due to Bm86 geographic sequence variation and the require...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors wish to thank the Biosecurity Tick Colony (Queensland Department of Agriculture & Fisheries, Australia) for the provision of Rhipicephalus microplus ticks utilized for this study, and Lucas Karbanowicz for assistance with video filming.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
0.4% Trypan Blue | ThermoFisher Scientific | 15250061 | |
1.5 mL microcentrifuge tube | Eppendorf | 3322 | |
100mM Carbonate Buffer | 3.03 g Na2CO3, 6.0 g NaHCO3 1000 ml distilled water pH 9.6 | ||
16 mL centrifuge tubes with sealing cap | Thermo Scientific | 3138-0016 | Cool in ice prior to gradient |
250 µM cell strainer | Thermo Fisher | 87791 | |
3,3′,5,5′-Tetramethylbenzidine (TMB) Liquid Substrate System for ELISA | Sigma | T0440 | Stored at 4C |
30% Hydrogen Peroxide | Labscene | BSPA5.500 | |
4-20% Tris-MOPS Gel | Gen Script | M42015 | |
4-Chloro-1-naphthol tablet | Sigma-Aldrich | C6788 | |
50 mL Falcon Tube | Corning Blue | 30 x 115mm style. Polyproplyene conical tube. | |
70 µM cell strainer | BD Falcon | 352350 | |
AP15 filter paper | Millipore | AO1504200 | |
Biotin (Type A) Conjugation Kit | Abcam | Ab102865 | |
Dissection microscope | Olympus | SZX7 | |
DP Manager | Olympus | 2.2.1.195 | Cell imagery software |
Duct Tape | Home Handyman | 48mm x 25mm Duct Tape | |
Dulbecco’s Modified Eagle Medium | Gibco | 11995-065 | DMEM - ice cold for protocol |
EDTA | Amresco | 0105-500G | |
F96 Maxisorp Immuno Plate | Nunc | 439454 | |
Fetal Bovine Serum | Sigma-Aldrich | 12003C | FCS |
Fluorescence microscope | Olympus | BX51 | |
Fluoroshield with DAPI | Sigma-Aldrich | F6057-20ML | DAPI |
Forceps | Dumont | #9 Dumont - Switerzland | |
Glycerol | Sigma-Aldrich | G5516 | Glycerol for molecular biology >99% |
Glycine | Sigma-Aldrich | 410225 | |
Hand-Held Counter | Officeworks | JA0376230 | |
Hank’s Balanced Salt Solution | Sigma Life Sciences | H9394 | HBSS – ice cold for protocol |
Hemacytometer | Optik Lakor | - | - |
L-Glutathione oxidized | Sigma-Aldrich | G4376 | |
Magnetic Separation Stand | Novagen | - | 4-Tube Magnetic Separation Rack |
Methanol | Sigma-Aldrich | 179337 | |
Milli-Q Water | Millipore | ZRXQ003WW | Integral Water Purification System for Ultrapure Water |
Nitrocellulose Membrane | Life Sciences | 66485 | 30cm x 3M pure nitrocellulose membrane |
PageRuler Prestained protein Ladder | Thermo-Fisher | SM0671 | |
PBS | 1.16 g Na2HPO4, 0.1 g KCl, 0.1 g K3PO4, 4.0 g NaCl (500 ml distilled water) pH 7.4 | ||
Percoll | Sigma-Aldrich | P1644-500ML | |
Peristaltic Pump | Masterflex | 7518-10 | |
Phosphoric Acid | Sigma-Aldrich | P6560 | |
Pierce Protein-Free T20 PBS Blocking Buffer | Thermo-Scientific | 37573 | Stored at 4C. Blocking Buffer |
Protease Inhibitor Cocktail | Sigma-Aldrich | P8215-5ML | PIC – stored at -20 °C |
Quick Start Bradford Dye Reagent 1x | Biorad | 500-0205 | For Bradford Assay |
Quick Start BSA Standards | Biorad | 500-0207 | BSA standards for Bradford Assay |
Scalpel | Lab. Co | Size 11 Scalpel | |
SilverQuest TM Staining Kit | Invitrogen | LC6070 | |
Simply Blue TM Safe Stain | Invitrogen | LC6060 | |
Sorvall C6+ Ultracentrifuge | Thermo Scientific | 46910 | |
Streptavidin (HRP) | Abcam | AB7403 | |
Streptavidin Magnetic Beads | New England Biolabs | S1420S | |
Super Glue - Ultra Fast Mini | UHU | UHU Super Glue 1mg. Ultra Fast mini | |
Table-top Centrifuge | Eppendorf | 22331 | |
TCEP | Thermo Fisher | 20490 | |
Triton X-100 | Biorad | 161-0407 | |
Tween-20 | Sigma | P2287-500ML | |
Vortex Mixer | Ratek | VM1 | |
Water Bath | Grant | GD100 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone