JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

An abbreviated fractionation protocol for the enrichment of detergent-insoluble protein aggregates from human postmortem brain is described.

Streszczenie

In this study, we describe an abbreviated single-step fractionation protocol for the enrichment of detergent-insoluble protein aggregates from human postmortem brain. The ionic detergent N-lauryl-sarcosine (sarkosyl) effectively solubilizes natively folded proteins in brain tissue allowing the enrichment of detergent-insoluble protein aggregates from a wide range of neurodegenerative proteinopathies, such as Alzheimer's disease (AD), Parkinson's disease and amyotrophic lateral sclerosis, and prion diseases. Human control and AD postmortem brain tissues were homogenized and sedimented by ultracentrifugation in the presence of sarkosyl to enrich detergent-insoluble protein aggregates including pathologic phosphorylated tau, the core component of neurofibrillary tangles in AD. Western blotting demonstrated the differential solubility of aggregated phosphorylated-tau and the detergent-soluble protein, Early Endosome Antigen 1 (EEA1) in control and AD brain. Proteomic analysis also revealed enrichment of β-amyloid (Aβ), tau, snRNP70 (U1-70K), and apolipoprotein E (APOE) in the sarkosyl-insoluble fractions of AD brain compared to those of control, consistent with previous tissue fractionation strategies. Thus, this simple enrichment protocol is ideal for a wide range of experimental applications ranging from Western blotting and functional protein co-aggregation assays to mass spectrometry-based proteomics.

Wprowadzenie

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and the closely related prion diseases are proteinopathies characterized by the gradual accumulation of detergent-insoluble protein aggregates in the brain with accompanying cognitive decline.1,2 This shared pathological feature is thought to play a central role in the etiology and pathophysiology of these neurodegenerative diseases.2 These aggregates typically consist of polymeric amyloid fibers, which are composed of repeating units of misfolded protein exhibiting cross β-structure.1,2,3,4 Biochemically, amyloid aggregates are highly resistant to chemical or thermal denaturation and solubilization,3 which presents unique challenges to their purification, analysis and study via traditional biochemical techniques.2,5,6,7,8,9,10,11 Unsurprisingly, the detergent-insoluble protein fraction has been the focus of much research into the pathophysiology of neurodegenerative diseases involving the accumulation of misfolded proteins.6,12,13,14

Biochemical fractionation techniques have often been utilized to enrich the detergent-insoluble fraction from postmortem brain homogenates.6,12,13,14 One of the most common methods involves the sequential extraction of tissue homogenates with buffers and detergents of increasing stringency, followed by ultracentrifugation to partition the soluble and insoluble fractions. A commonly used sequential fractionation protocol6,14 involves the homogenization of frozen tissue samples in a detergent-free low salt (LS) buffer and the resultant insoluble pellets are then sequentially extracted with buffers containing high salt, non-ionic detergents, high sucrose, ionic detergents and finally chaotropes like urea.6,14 An obvious drawback of such a sequential fractionation protocols is the substantial time and labor commitment required to complete them. Including homogenization and ultracentrifugation, a typical five-step fractionation protocol can take several hours or even days to complete. 4,6,7,10,15,16,17,18 Additionally, as many pathologic protein aggregates remain insoluble in all but the harshest conditions19,20 most of the generated fractions are of limited value. Thus, the less-stringent fractionation steps utilizing high salt concentrations and non-ionic detergents are largely redundant.

Previous studies have shown that the ionic detergent N-lauryl-sarcosine (sarkosyl) is an excellent candidate for a simplified single-step detergent fractionation protocol.5,6,12,13,14,21,22,23 As a denaturing detergent, sarkosyl is stringent enough to solubilize the vast majority of natively folded proteins in brain without solubilizing misfolded protein aggregates composed of beta-amyloid (Aβ),6,11 phosphorylated tau (pTau),6 TAR DNA-binding protein 43 (TDP-43),14 alpha-synuclein,12,13 scrapie,23 or U1 small nuclear ribonucleoproteins (U1 snRNPs) such as U1-70K.5,21,22As sarkosyl is less stringent than the ubiquitous anionic detergent sodium dodecyl sulfate (SDS), it preserves less robust oligomeric forms of misfolded protein aggregates that cannot withstand SDS treatment.9

Previously, we described an abbreviated detergent-fractionation protocol that achieved results comparable to the more laborious sequential fractionation methodologies.5 By omitting the less stringent fractionation steps, we were able to develop a facile single-step fractionation protocol for the enrichment of detergent-insoluble protein aggregates from postmortem human brain.5 This detailed protocol described herein is well suited for a wide range of experimental applications ranging from Western blotting and mass spectrometry-based proteomics to functional protein misfolding and aggregation seeding assays.5,6,21

Protokół

Ethics Statement: All brain tissues were obtained from the Emory Alzheimer's Disease Research Center (ADRC) Brain Bank. Human postmortem tissues were acquired under proper Institutional Review Board (IRB) protocols.

1. Homogenization and Fractionation

  1. Tissue selection
    NOTE: Frozen postmortem frontal cortex tissue from healthy control (Ctl) and pathologically confirmed AD cases were selected from the Emory ADRC brain bank (n=2). Post-mortem neuropathological evaluation of amyloid plaque distribution was performed according to the Consortium to Establish a Registry for Alzheimer's Disease semi-quantitative scoring criteria24, although neurofibrillary tangle pathology was assessed in accordance with the Braak staging system.16
    1. Obtain frozen postmortem brain tissue from healthy control (Ctl) and pathologically confirmed AD cases. Utilizing containers of dry ice, forceps and a razor blade, excise ~ 250 mg portions of grey matter from each tissue sample on tared disposable weigh boats, taking care to prevent the tissue from thawing. Record the weight of each piece to be homogenized.
    2. Excise ~ 250 mg of grey matter using forceps and razor by visually inspecting to locate the interface between the outer grey matter and inner white matter. Avoid white matter and more importantly, any large blood vessels or bloody regions, meninges, or arachnoid mater. Keep the tissue frozen during the cutting process by working quickly and frequently placing weighing boat with brain tissue into polystyrene containers with dry ice.
    3. Record the exact weight of grey matter excised from each frozen piece using an analytical balance. Calculate the volume of low salt (LS) buffer (see Table 1) needed for dounce homogenization (5 mL/g or 20% w/v).
    4. Prepare 10 mL LS buffer with 1x protease and phosphatase inhibitor cocktail and chill on ice.
    5. Remove weighed tissue and weighing boat from dry ice and dice into roughly 2 x 2 mm pieces as it thaws. Transfer to a 2 mL pre-chilled dounce homogenizer tube on ice.
    6. Add 5 mL/g (20% w/v) of ice-cold low salt (LS) buffer with 1X protease and phosphatase inhibitor cocktail.
    7. Homogenize the brain tissue on ice using approximately 10 strokes of high clearance pestle A and 15 strokes of low clearance pestle B.
    8. Transfer all homogenate to a 2 mL polypropylene tube using a glass Pasteur pipette. Label the tube with “TH” (Total Homogenate), the tissue case number, and homogenate volume.  Aliquot 0.8 mL into a labeled 1.5 mL tube. Any excess homogenate can be similarly aliquoted and stored at -80 °C.
    9. To each 0.8 mL aliquot, add 100 µL each of 5 M NaCl and 10% (w/v) sarkosyl to concentrations of 0.5 M and 1% w/v, respectively. Mix tubes well by inversion and incubate on ice for 15 min. Label tubes with "TH-S" (Total Homogenate-Sarkosyl) to indicate that the homogenates are in sarkosyl-buffer (Table 1).
    10. Sonicate each tube for three 5 s pulses at 30% amplitude on ice (maximum intensity = 40%) using a microtip probe. 
    11. Determine the protein concentrations of the homogenates using the bicinchoninic acid (BCA) assay25 method.
      NOTE: The average protein concentration of TH-S homogenates prepared at 5 mL LS per gram of tissue is 15-20 mg/mL. The homogenates can be fractionated immediately or stored at -80 °C until use.
    12. Dilute TH-S homogenates to 10 mg/mL using ice-cold sark buffer (Table 1) with 1x protease and phosphatase inhibitors.
    13. Transfer 5 mg protein (0.5 mL) of each TH-S homogenate into 500 µL polycarbonate ultracentrifuge tubes and pair-balance with sark-buffer. Load tubes into a pre-chilled rotor and ultracentrifuge at 180,000 x g for 30 min at 4 °C. Transfer the sarkosyl-soluble supernatants (S1) to 1.5 mL tubes and store at -80 °C.
      NOTE: (Optional wash) Add 200 µL of sark-buffer to the ultracentrifuge tubes containing the detergent-insoluble fractions (P1) and dislodge the pellets (P1) from the bottom of the ultracentrifuge tubes using a 200 µL pipette tip.
    14. Briefly pulse-spin the inverted tubes for 2-3 s (≤2,500 x g) on a microcentrifuge to transfer the pellets (P1) and buffer to the 1.5 mL tubes below. Resuspend the insoluble pellets (P1) in the sark-buffer by pipetting up and down to ensure the pellet is disrupted.
    15. Pair-balance, and centrifuge at 180,000 x g for an additional 30 min at 4 °C. 
    16. Discard the optional wash supernatant (S2) and incubate the sarkosyl-insoluble pellets (P2) in 50-75 µL of urea buffer (Table 1) with 1x PIC (protease and phosphatase inhibitor cocktail) for 30 min at room temperature to solubilize the pellet.
      NOTE: Warm urea buffer to room temperature before use to avoid SDS precipitation. For detergent-sensitive applications, omit SDS from urea buffer and consider washing the insoluble pellet (P2) in low salt buffer before resuspending in urea buffer.
    17. Transfer the resuspended pellets (P2) to 0.5 mL tubes and use brief (1 s) microtip sonication at 20% amplitude (maximum intensity = 40%) to fully solubilize the pellets.
    18. Determine the protein concentrations of the sarkosyl-soluble (S1) and -insoluble (P2) fractions using the BCA assay method. Use these fractions immediately or store at -80 °C until use.

2. Immunoblotting

  1. Western blotting
    NOTE: Western blotting was performed according to previously reported procedures with slight modifications.5,10
    1. Prepare 40 µg samples of total homogenates (TH-S), sark-soluble (S1) and sark-insoluble (P2) fractions in 1X Laemmli SDS-page sample buffer with 5 mM TCEP pH 7. Incubate samples at 95 °C for 5 min.
    2. Load samples on a precast 10-well 4-12% Bis-Tris SDS-PAGE gel. Electrophorese at 80 V for the first centimeter (10 min) and 120 V for the remainder (60 min) or until the tracking dye reaches the bottom of the gel.
    3. Use a fresh razor blade and gel knife to split-open the pre-cast gel cassette. Gently cut away the combs and very bottom of the gel with a fresh razor blade.
    4. Resuspend the insoluble pellets (P1) in 200 µl sark-buffer with 1x PIC by pipetting up and down.
    5. Transfer to a 0.2 µm nitrocellulose membrane using a dry transfer method on a blotting machine (see the Materials Table).
    6. Block the membrane in blocking buffer (BB) without Tween 20 for 30 min, followed with BB with 0.05% Tween 20 (BB/T) for 30 min. After blocking, rinse the membrane in TBS/T (0.1% Tween 20) for 5 min to remove excess blocking buffer.
    7. Prepare 1:1,000 dilutions of the primary antibodies pT231, Tau-2 (pan tau), AT8 and EEA1 in BB/T (0.05% Tween 20).
    8. Incubate the membranes in primary antibody solution overnight at 4 °C with circular agitation. Rinse the membrane in TBS/T for 3 x 15 min.
    9. Probe the membrane with a 1:20,000 dilution of the fluorescently-labeled near-IR secondary antibody in BB/T for 60 min at room temperature in darkness on shaker. Rinse the membrane for 3 x 10 min in TBS/T and 2 x 5 min in TBS.
    10. Scan the membrane using an infrared imaging system at the appropriate excitation wavelength (e.g. 700 nm (red channel) for infrared dye 680 goat anti-mouse IgG (H+L) secondary and 800 nm (green channel) for infrared dye 790 donkey anti-rabbit IgG (H+L) secondary).
    11. Use the imaging software to quantify signal intensities and perform densitometry measurements as per the manufacturer's instructions, ensuring auto-background setting is set to average the entire background.

Wyniki

The abbreviated single-step sarkosyl-fractionation protocol was used to enrich detergent-insoluble protein aggregates from control and AD postmortem brain (Figure 1). Proteins from TH-S, S1, S2 and P2 fractions were resolved by SDS-PAGE, fixed for 15 min in Coomassie blue fixative buffer followed by gentle staining with Coomassie Brilliant Blue G-250 staining buffer. The resuspension step is optional since there were undetectable levels of protein in the S2 f...

Dyskusje

Herein we introduce and discuss an abbreviated single-step detergent-fractionation protocol that is applicable to a wide variety of experimental applications ranging from mass spectrometry-based proteomics analysis to functional protein misfolding assays and western blotting.5,6,7,10 This methodology is perhaps most effective when used to study neurodegenerative proteinopathies such as Alzheime...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors thank Drs. Jim Lah and Allan Levey, Emory Department of Neurology, for helpful comments and suggestions. This work was partly funded by the Accelerating Medicine Partnership grant (U01AG046161-02), the Emory Alzheimer's Disease Research Center (P50AG025688) and a National Institute on Aging grant (R01AG053960-01) to N.T.S. This research was also supported in part by the Neuropathology Core of the Emory Neuroscience NINDS Core Facilities grant, P30NS055077.

Materiały

NameCompanyCatalog NumberComments
Protease and phosphatase inhibitor cocktail, EDTA-free (100X)Thermo Fisher78441protease & phosphatase inhibitor cocktail
Sonic Dismembrator System (ultrasonicator)Fisher ScientificFB505110microtip ultrasonicator
Optimax TLX UltracentrifugeBeckman Coulter361545refrigerated ultracentrifuge
TLA120.1 rotorBeckman Coulter362224ultracentrifuge rotor
500 ul (8 x 34 mm) polycarbonate tubes, thickwallBeckman Coulter343776ultracentrifuge tubes for TLA120.1 rotor
4X SDS sample bufferHome-madeN/ASDS-PAGE
TCEP solution, neutral pHThermo Fisher77720reducing agent
(TBS) blocking bufferThermo Fisher37542blocking buffer
(TBS) blocking buffer + 0.05% Tween 20Thermo Fisher37543blocking buffer and antibody diluent
4-12% Bolt Bis-Tris Plus gels, 10-wellThermo FisherNW04120BOXprecast SDS-PAGE gels
MES SDS Running Buffer (20X)Thermo FisherB0002SDS-PAGE running buffer
N-Lauroylsarcosine sodium salt (sarkosyl)Sigma AldrichL5777-50Gdetergent
Anti-Tau-2 (pan tau) antibodyChemiconMAB375antibodies
Anti-phospho-threonine 231 Tau antibodyMilliporeMAB5450antibodies
Anti-phospho-seroine 202 and threonine 205 Tau antibody (AT8)Thermo FisherMN1020antibodies
Anti-early endosome antigen 1 (EEA1) antibodyabcamab2900antibodies
Alexa Fluor 680 goat anti-mouse IgG (H+L) secondary antibodyThermo FisherA21058antibodies
Alexa Fluor 790 donkey anti-rabbit IgG (H+L) secondary antibodyThermo FisherA11374antibodies
iBlot2 Dry Blotting SystemThermo FisherIB21001Gel transfer
iBlot2 Transfer Stacks, Nitrocellulose, miniThermo FisherIB23002Gel transfer

Odniesienia

  1. Taylor, J. P., Hardy, J., Fischbeck, K. H. Toxic Proteins in Neurodegenerative Disease. Science. 296 (5575), 1991 (1991).
  2. Ross, C. A., Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Medicine. 10, S10-S17 (2004).
  3. Ramírez-Alvarado, M., Merkel, J. S., Regan, L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl. Acad. Sci. 97 (16), 8979-8984 (2000).
  4. Hamley, I. W. The Amyloid Beta Peptide: A Chemist's Perspective. Role in Alzheimer's and Fibrillization. Chem Rev. 112 (10), 5147-5192 (2012).
  5. Diner, I., et al. Aggregation Properties of the Small Nuclear Ribonucleoprotein U1-70K in Alzheimer Disease. J. Biol. Chem. 289 (51), 35296-35313 (2014).
  6. Gozal, Y. M., et al. Proteomics Analysis Reveals Novel Components in the Detergent-Insoluble Subproteome in Alzheimer's Disease. J. Proteome Res. 8 (11), 5069-5079 (2009).
  7. Hales, C. M., et al. Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. PROTEOMICS. , (2016).
  8. Julien, C., Bretteville, A., Planel, E., Sigurdsson, E. M., Calero, M., Gasset, M. . Amyloid Proteins: Methods and Protocols. , 473-491 (2012).
  9. Nizhnikov, A. A., et al. Proteomic Screening for Amyloid Proteins. PLoS ONE. 9 (12), e116003 (2014).
  10. Seyfried, N. T., et al. Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards. J. Proteome Res. 11 (5), 2721-2738 (2012).
  11. Woltjer, R. L., et al. Proteomic determination of widespread detergent insolubility, including Aβ but not tau, early in the pathogenesis of Alzheimer's disease. FASEB J. , (2005).
  12. Miake, H., Mizusawa, H., Iwatsubo, T., Hasegawa, M. Biochemical Characterization of the Core Structure of α-Synuclein Filaments. J. Biol. Chem. 277 (21), 19213-19219 (2002).
  13. Hasegawa, M., et al. Phosphorylated α-Synuclein Is Ubiquitinated in α-Synucleinopathy Lesions. J. Biol. Chem. 277 (50), 49071-49076 (2002).
  14. Neumann, M., et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science. 314 (5796), 130 (2006).
  15. Bishof, I., Diner, I., Seyfried, N. An Intrinsically Disordered Low Complexity Domain is Required for U1-70K Self-association. FASEB J. 29 (Suppl 1), (2015).
  16. Braak, H., Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82 (4), 239-259 (1991).
  17. Noguchi, A., et al. Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. J. Biol. Chem. 284 (47), 32895-32905 (2009).
  18. Bai, B., et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc. Natl. Acad. Sci. 110 (41), 16562-16567 (2013).
  19. Klunk, W. E., Pettegrew, J. W. Alzheimer's β-Amyloid Protein Is Covalently Modified when Dissolved in Formic Acid. J Neurochem. 54 (6), 2050-2056 (1990).
  20. Yang, L. -. S., Gordon-Krajcer, W., Ksiezak-Reding, H. Tau Released from Paired Helical Filaments with Formic Acid or Guanidine Is Susceptible to Calpain-Mediated Proteolysis. J Neurochem. 69 (4), 1548-1558 (1997).
  21. Bai, B., et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc Natl Acad Sci U S A. 110 (41), 16562-16567 (2013).
  22. Hales, C. M., et al. U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. Mol Neurodegener. 9 (1), 15 (2014).
  23. Xiong, L. -. W., Raymond, L. D., Hayes, S. F., Raymond, G. J., Caughey, B. Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem. 79 (3), 669-678 (2001).
  24. Mirra, S. S., et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 41 (4), 479-486 (1991).
  25. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150 (1), 76-85 (1985).
  26. Guo, J. L., et al. Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213 (12), 2635-2654 (2016).
  27. Matveev, S. V., et al. A distinct subfraction of Aβ is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem. 131 (3), 356-368 (2014).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Detergent insoluble Protein AggregatesHuman Postmortem BrainNeurodegenerationMisfolded Protein AggregatesGray MatterLow salt BufferSodium ChlorideSarkosylSonicationProtein Concentration

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone