Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
An abbreviated fractionation protocol for the enrichment of detergent-insoluble protein aggregates from human postmortem brain is described.
In this study, we describe an abbreviated single-step fractionation protocol for the enrichment of detergent-insoluble protein aggregates from human postmortem brain. The ionic detergent N-lauryl-sarcosine (sarkosyl) effectively solubilizes natively folded proteins in brain tissue allowing the enrichment of detergent-insoluble protein aggregates from a wide range of neurodegenerative proteinopathies, such as Alzheimer's disease (AD), Parkinson's disease and amyotrophic lateral sclerosis, and prion diseases. Human control and AD postmortem brain tissues were homogenized and sedimented by ultracentrifugation in the presence of sarkosyl to enrich detergent-insoluble protein aggregates including pathologic phosphorylated tau, the core component of neurofibrillary tangles in AD. Western blotting demonstrated the differential solubility of aggregated phosphorylated-tau and the detergent-soluble protein, Early Endosome Antigen 1 (EEA1) in control and AD brain. Proteomic analysis also revealed enrichment of β-amyloid (Aβ), tau, snRNP70 (U1-70K), and apolipoprotein E (APOE) in the sarkosyl-insoluble fractions of AD brain compared to those of control, consistent with previous tissue fractionation strategies. Thus, this simple enrichment protocol is ideal for a wide range of experimental applications ranging from Western blotting and functional protein co-aggregation assays to mass spectrometry-based proteomics.
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and the closely related prion diseases are proteinopathies characterized by the gradual accumulation of detergent-insoluble protein aggregates in the brain with accompanying cognitive decline.1,2 This shared pathological feature is thought to play a central role in the etiology and pathophysiology of these neurodegenerative diseases.2 These aggregates typically consist of polymeric amyloid fibers, which are composed of repeating units of misfolded protein exhibiting cross β-structure.1,2,3,4 Biochemically, amyloid aggregates are highly resistant to chemical or thermal denaturation and solubilization,3 which presents unique challenges to their purification, analysis and study via traditional biochemical techniques.2,5,6,7,8,9,10,11 Unsurprisingly, the detergent-insoluble protein fraction has been the focus of much research into the pathophysiology of neurodegenerative diseases involving the accumulation of misfolded proteins.6,12,13,14
Biochemical fractionation techniques have often been utilized to enrich the detergent-insoluble fraction from postmortem brain homogenates.6,12,13,14 One of the most common methods involves the sequential extraction of tissue homogenates with buffers and detergents of increasing stringency, followed by ultracentrifugation to partition the soluble and insoluble fractions. A commonly used sequential fractionation protocol6,14 involves the homogenization of frozen tissue samples in a detergent-free low salt (LS) buffer and the resultant insoluble pellets are then sequentially extracted with buffers containing high salt, non-ionic detergents, high sucrose, ionic detergents and finally chaotropes like urea.6,14 An obvious drawback of such a sequential fractionation protocols is the substantial time and labor commitment required to complete them. Including homogenization and ultracentrifugation, a typical five-step fractionation protocol can take several hours or even days to complete. 4,6,7,10,15,16,17,18 Additionally, as many pathologic protein aggregates remain insoluble in all but the harshest conditions19,20 most of the generated fractions are of limited value. Thus, the less-stringent fractionation steps utilizing high salt concentrations and non-ionic detergents are largely redundant.
Previous studies have shown that the ionic detergent N-lauryl-sarcosine (sarkosyl) is an excellent candidate for a simplified single-step detergent fractionation protocol.5,6,12,13,14,21,22,23 As a denaturing detergent, sarkosyl is stringent enough to solubilize the vast majority of natively folded proteins in brain without solubilizing misfolded protein aggregates composed of beta-amyloid (Aβ),6,11 phosphorylated tau (pTau),6 TAR DNA-binding protein 43 (TDP-43),14 alpha-synuclein,12,13 scrapie,23 or U1 small nuclear ribonucleoproteins (U1 snRNPs) such as U1-70K.5,21,22As sarkosyl is less stringent than the ubiquitous anionic detergent sodium dodecyl sulfate (SDS), it preserves less robust oligomeric forms of misfolded protein aggregates that cannot withstand SDS treatment.9
Previously, we described an abbreviated detergent-fractionation protocol that achieved results comparable to the more laborious sequential fractionation methodologies.5 By omitting the less stringent fractionation steps, we were able to develop a facile single-step fractionation protocol for the enrichment of detergent-insoluble protein aggregates from postmortem human brain.5 This detailed protocol described herein is well suited for a wide range of experimental applications ranging from Western blotting and mass spectrometry-based proteomics to functional protein misfolding and aggregation seeding assays.5,6,21
Ethics Statement: All brain tissues were obtained from the Emory Alzheimer's Disease Research Center (ADRC) Brain Bank. Human postmortem tissues were acquired under proper Institutional Review Board (IRB) protocols.
1. Homogenization and Fractionation
2. Immunoblotting
The abbreviated single-step sarkosyl-fractionation protocol was used to enrich detergent-insoluble protein aggregates from control and AD postmortem brain (Figure 1). Proteins from TH-S, S1, S2 and P2 fractions were resolved by SDS-PAGE, fixed for 15 min in Coomassie blue fixative buffer followed by gentle staining with Coomassie Brilliant Blue G-250 staining buffer. The resuspension step is optional since there were undetectable levels of protein in the S2 f...
Herein we introduce and discuss an abbreviated single-step detergent-fractionation protocol that is applicable to a wide variety of experimental applications ranging from mass spectrometry-based proteomics analysis to functional protein misfolding assays and western blotting.5,6,7,10 This methodology is perhaps most effective when used to study neurodegenerative proteinopathies such as Alzheime...
The authors have nothing to disclose.
The authors thank Drs. Jim Lah and Allan Levey, Emory Department of Neurology, for helpful comments and suggestions. This work was partly funded by the Accelerating Medicine Partnership grant (U01AG046161-02), the Emory Alzheimer's Disease Research Center (P50AG025688) and a National Institute on Aging grant (R01AG053960-01) to N.T.S. This research was also supported in part by the Neuropathology Core of the Emory Neuroscience NINDS Core Facilities grant, P30NS055077.
Name | Company | Catalog Number | Comments |
Protease and phosphatase inhibitor cocktail, EDTA-free (100X) | Thermo Fisher | 78441 | protease & phosphatase inhibitor cocktail |
Sonic Dismembrator System (ultrasonicator) | Fisher Scientific | FB505110 | microtip ultrasonicator |
Optimax TLX Ultracentrifuge | Beckman Coulter | 361545 | refrigerated ultracentrifuge |
TLA120.1 rotor | Beckman Coulter | 362224 | ultracentrifuge rotor |
500 ul (8 x 34 mm) polycarbonate tubes, thickwall | Beckman Coulter | 343776 | ultracentrifuge tubes for TLA120.1 rotor |
4X SDS sample buffer | Home-made | N/A | SDS-PAGE |
TCEP solution, neutral pH | Thermo Fisher | 77720 | reducing agent |
(TBS) blocking buffer | Thermo Fisher | 37542 | blocking buffer |
(TBS) blocking buffer + 0.05% Tween 20 | Thermo Fisher | 37543 | blocking buffer and antibody diluent |
4-12% Bolt Bis-Tris Plus gels, 10-well | Thermo Fisher | NW04120BOX | precast SDS-PAGE gels |
MES SDS Running Buffer (20X) | Thermo Fisher | B0002 | SDS-PAGE running buffer |
N-Lauroylsarcosine sodium salt (sarkosyl) | Sigma Aldrich | L5777-50G | detergent |
Anti-Tau-2 (pan tau) antibody | Chemicon | MAB375 | antibodies |
Anti-phospho-threonine 231 Tau antibody | Millipore | MAB5450 | antibodies |
Anti-phospho-seroine 202 and threonine 205 Tau antibody (AT8) | Thermo Fisher | MN1020 | antibodies |
Anti-early endosome antigen 1 (EEA1) antibody | abcam | ab2900 | antibodies |
Alexa Fluor 680 goat anti-mouse IgG (H+L) secondary antibody | Thermo Fisher | A21058 | antibodies |
Alexa Fluor 790 donkey anti-rabbit IgG (H+L) secondary antibody | Thermo Fisher | A11374 | antibodies |
iBlot2 Dry Blotting System | Thermo Fisher | IB21001 | Gel transfer |
iBlot2 Transfer Stacks, Nitrocellulose, mini | Thermo Fisher | IB23002 | Gel transfer |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone