Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Electroconvulsive seizure (ECS) is an experimental animal model of electroconvulsive therapy for severe depression. ECS globally stimulates activity in the hippocampus, leading to synaptogenesis and synaptic plasticity. Here, we describe methods for ECS induction in rats and for subcellular fractionation of their hippocampi to examine seizure-induced changes in synaptic proteins.
Electroconvulsive seizure (ECS) is an experimental animal model of electroconvulsive therapy, the most effective treatment for severe depression. ECS induces generalized tonic-clonic seizures with low mortality and neuronal death and is a widely-used model to screen anti-epileptic drugs. Here, we describe an ECS induction method in which a brief 55-mA current is delivered for 0.5 s to male rats 200 - 250 g in weight via ear-clip electrodes. Such bilateral stimulation produced stage 4 - 5 clonic seizures that lasted about 10 s. After the cessation of acute or chronic ECS, most rats recovered to be behaviorally indistinguishable from sham "no seizure" rats. Because ECS globally elevates brain activity, it has also been used to examine activity-dependent alterations of synaptic proteins and their effects on synaptic strength using multiple methods. In particular, subcellular fractionation of the postsynaptic density (PSD) in combination with Western blotting allows for the quantitative determination of the abundance of synaptic proteins at this specialized synaptic structure. In contrast to a previous fractionation method that requires large amount of rodent brains, we describe here a small-scale fractionation method to isolate the PSD from the hippocampi of a single rat, without sucrose gradient centrifugation. Using this method, we show that the isolated PSD fraction contains postsynaptic membrane proteins, including PSD95, GluN2B, and GluA2. Presynaptic marker synaptophysin and soluble cytoplasmic protein α-tubulin were excluded from the PSD fraction, demonstrating successful PSD isolation. Furthermore, chronic ECS decreased GluN2B expression in the PSD, indicating that our small-scale PSD fractionation method can be applied to detect the changes in hippocampal PSD proteins from a single rat after genetic, pharmacological, or mechanical treatments.
Electroconvulsive therapy has been used to treat patients with major depressive disorders, including severe drug-resistant depression, bipolar depression, Parkinson's diseases, and schizophrenia1,2. In this therapy, seizure is generated by electrical stimulus delivered to the head of anesthetized patients via epicranial electrodes1,2,3. Repetitive administration of ECS has been clinically beneficial to drug-resistant depressive disorders1,2,3. However, the exact mechanism underlying the long-term efficacy of the antidepressant effect in humans has remained elusive. ECS is an animal model of electroconvulsive therapy and is widely used to investigate its therapeutic mechanism. In rodents, both acute ECS and chronic ECS treatment promote adult neurogenesis in the hippocampi and reorganize the neural network4,5, which is likely to contribute to improvements in cognitive flexibility. Furthermore, global elevation of brain activity by ECS alters the abundance of transcripts, such as a brain derived neurotropic factor6, and multiple proteins, including metabotropic glutamate receptor 17 and the N-methyl-D-aspartate (NMDA) type glutamate receptor subunits7. These changes are involved in mediating long-term modification of synapse number, structure, and strength in the hippocampus7,8,9.
In ECS models, electrical stimulation is delivered to rodents via stereotaxically implanted electrodes, corneal electrodes, or ear electrodes to evoke generalized tonic-clonic seizures10,11. Stereotaxic implantation of electrodes involves brain surgery and requires significant time to improve the experimenter's surgical skills to minimize injury. Less invasive corneal electrodes could cause corneal abrasion and dryness and require anesthesia. The use of ear-clip electrodes bypasses these limitations because they can be used on rodents without surgery or anesthesia and cause minimal injury. Indeed, we found that current delivered to awake rats via ear-clip electrodes reliably induces stage 4-5 tonic-clonic seizures and alters synaptic proteins in their hippocampi10.
To examine the ECS-induced abundance of synaptic proteins in the specific brain regions of the rodents, it is important to choose the experimental methods that are most suitable for their detection and quantification. Subcellular fractionation of the brain allows for the crude isolation of soluble cytosolic proteins; membrane proteins; organelle-bounds proteins; and even proteins in special subcellular structures, such as the PSD12,13,14. The PSD is a dense and well-organized subcellular domain in neurons in which synaptic proteins are highly concentrated at and near the postsynaptic membrane12,13,15. The isolation of the PSD is useful for the study of synaptic proteins enriched at the PSD, since dynamic changes in the abundance and function of postsynaptic glutamate receptors, scaffolding proteins, and signal transduction proteins in the PSD12,15,16,17 are correlated with synaptic plasticity and the synaptopathy observed in several neurological disorders17,18. A previous subcellular fractionation method used to purify the PSD involved the isolation of the detergent-insoluble fraction from the crude membrane fraction of the brain by the differential centrifugation of sucrose gradients14,19. The major challenge with this traditional method is that it requires large amounts of rodent brains14,19. Preparation of 10 - 20 rodents to isolate the PSD fraction per treatment requires extensive cost and time investment and is not practically feasible if there are many treatments.
To overcome this challenge, we have adapted a simpler method that directly isolates the PSD fraction, without sucrose gradient centrifugation20,21, and revised it to be applicable to PSD isolation from the hippocampi of a single rat brain.Our small-scale PSD fractionation method yields about 30 - 50 µg of the PSD proteins from 2 hippocampi, sufficient for use in several biochemical assays, including immunoprecipitation and Western blotting. Western blotting demonstrates the success of our method for isolating the PSD by revealing the enrichment of postsynaptic density protein 95 (PSD-95) and the exclusion of presynaptic marker synaptophysin and soluble cytoplasmic protein α-tubulin. Our ECS induction and small-scale PSD fractionation methods are easily adaptable to other rodent brain regions and provide a relatively simple and reliable way to evaluate the effects of ECS on the expression of PSD proteins.
All experimental procedures including animal subjects have been approved by the Institutional Animals Care and Use Committee at the University of Illinois at Urbana-Champaign.
1. Maintaining a Rat Colony
2. Preparation of an ECS Machine
3. Induction of Acute ECS
NOTE: See Figure 1B, top panel.
4. Induction of Chronic ECS
NOTE: See Figure 1B, bottom panel.
5. Homogenization and Fractionation of Rat Hippocampi
NOTE: See Figure 2.
6. Isolation of the PSD from the Crude Membrane Protein (P2) Fraction
7. Western Blotting
8. Quantification of Western Blots
Using the detailed procedure presented here, one electrical shock (55 mA, 100 pulses/s for 0.5 s) delivered via ear-clip electrodes induced nonrecurring stage 4-5 tonic-clonic seizures in rats (Figure 1A-B). A total 8 of rats received acute ECS induction and displayed stage 4-5 tonic-clonic seizures. The seizures lasted about 10 s, and all rats recovered within 1 - 2 min of seizure cessation. Sham "no seizure" rats did not receive an ...
Here, we describe an ECS induction method in rats that elicits the global stimulation of neuronal activity in their hippocampi. ECS is an animal model of electroconvulsive therapy, which is clinically used to treat drug refractory depressive disorders in humans1,2,3. Despite use of electroconvulsive therapy to treat severe depression, the precise underlying mechanism remains unclear. Because ECS induces anti-depressant-like beha...
The authors declare that they have no competing financial interests.
The authors thank Dr. Eric C. Bolton for allowing us to use his centrifuge for fractionation and Dr. Graham H. Diering in Dr. Richard L. Huganir's lab at John's Hopkins University for providing us with the small-scale protocol for the PSD fractionation.
Name | Company | Catalog Number | Comments |
Spargue-Dawley rat | Charles River Laboratories | ECS supplies | |
A pulse generator | Ugo Bsile, Comerio, Italy | 57800 | ECS supplies |
MilliQ water purifying system | EMD Millipore | Z00Q0VWW | Subcellular fractionation supplies |
Sucrose | Em science | SX 1075-3 | Subcellular fractionation supplies |
Na4O7P2 | SIGMA-ALDRICH | 221368 | Subcellular fractionation supplies |
Ethylenediaminetetraacetic acid (EDTA) | SIGMA-ALDRICH | E9884 | Subcellular fractionation supplies |
HEPES | SIGMA-ALDRICH | H0527 | Subcellular fractionation supplies |
Okadaic acid | TOCRIS | 1136 | Subcellular fractionation supplies |
Halt Protease Inhibitor | Thermo Scientific | 78429 | Subcellular fractionation supplies |
NaVO3 | SIGMA-ALDRICH | 72060 | Subcellular fractionation supplies |
EMD Millipore Sterito Sterile Vacuum Bottle-Top Filters | Fisher Scientific | SCGPS05RE | Subcellular fractionation supplies |
Iris Scissors | WPI (World Precision Instruments) | 500216-G | Subcellular fractionation supplies |
30 mm tissue culture dish | Fisher Scientific | 08-772B | Subcellular fractionation supplies |
Glass homogenizer and a Teflon pestle | VWR | 89026-384 | Subcellular fractionation supplies |
1.7 mL microcentrifuge tube | DENVILLE SCIENTIFIC INC. | C2170 (1001002) | Subcellular fractionation supplies |
Sorvall Legend XT/XF Centrifuge | Thermo Fisher | 75004521 | Subcellular fractionation supplies |
Pierce BCA Protein Assay Reagent A, 500 mL | Thermo Fisher | #23228 | Western blot supplies |
Pierce BCA Protein Assay Reagent B, 25 mL | Thermo Fisher | #1859078 | Western blot supplies |
SDS-polyacrylamide gel (SDS-PAGE) | BIO-RAD | #4561086S | Western blot supplies |
Running Buffer | Made in the lab | Western blot supplies. | |
Mini-PROTEAN Tetra Vertical Electrophorsis Cell for MiniPrecast Gels, 4-gel | BIO-RAD | #1658004 | Western blot supplies |
Polyvinyl difluoride (PVDF) membrane | Milipore | IPVH00010 | Western blot supplies |
Transfer Buffer | Made in the lab | Western blot supplies. | |
Tris-base | Fisher Scientific | BP152-1 | Western blot supplies |
Glycine | Fisher Scientific | BP381-5 | Western blot supplies |
Sodium dodecyl sulfate | SIGMA-ALDRICH | 436143 | Western blot supplies |
Methanol | Fisher Scientific | A454-4 | Western blot supplies |
Triton X-100 | Fisher Scientific | BP151-500 | detergent for PSD isolation |
Mini Trans-Blot Module | BIO-RAD | #1703935 | Western blot supplies |
Nonfat instant dry milk | Great value | Western blot supplies | |
Multi-purposee rotator | Thermo Scientific | Model-2314 | Western blot supplies |
Hyblot CL Autoradiography Film | DENVILLE SCIENTIFIC INC. | E3018 (1001365) | Western blot supplies |
Enhanced chemifluorescence substrate | Thermo Scientific | 32106 | Western blot supplies |
a Konica SRX-101A film processor | KONICA MINOLTA | SRX-101A | Western blot supplies |
Name of Antibody | |||
PSD-95 | Cell Signaling | #2507 | Antibody dilution = 1:500 - 1,000, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit |
Synaptophysin | Cell Signaling | #4329 | Antibody dilution = 1:500 - 1,000, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit |
alpha-Tubulin | Santacruz | SC-5286 | Antibody dilution = 1:500 - 1,000, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Mouse |
GluN2B | Neuromab | 75-097 | Antibody dilution = 1:500 - 1,000, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Mouse |
GluA2 | Sigma-aldrich | Sab 4501295 | Antibody dilution = 1:500 - 1,000, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit |
STEP | Santacruz | SC-23892 | Antibody dilution = 1:200 - 500, time = 9 - 12 h, Reaction Temperature = 4 °C, Host Species = Mouse |
Peroxidas AffiniPure Donkey Anti-Mouse IgG (H+L) | Jackson ImmunoReserch laboratory | 715-035-150 | Antibody dilution = 1:2,000-5,000, time = 1 h, Reaction Temperature = RT, Host Species = Donkey |
Peroxidas AffiniPure Donkey Anti-Rabbit IgG (H+L) | Jackson ImmunoReserch laboratory | 711-035-152 | Antibody dilution = 1:2,000-5,000, time = 1 h, Reaction Temperature = RT, Host Species = Donkey |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone