Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we present a practical guide of building an integrated microscopy system, which merges conventional epi-fluorescent imaging, single-molecule detection-based super-resolution imaging, and multi-color single-molecule detection, including single-molecule fluorescence resonance energy transfer imaging, into one set-up in a cost-efficient way.
Fluorescence microscopy is a powerful tool to detect biological molecules in situ and monitor their dynamics and interactions in real-time. In addition to conventional epi-fluorescence microscopy, various imaging techniques have been developed to achieve specific experimental goals. Some of the widely used techniques include single-molecule fluorescence resonance energy transfer (smFRET), which can report conformational changes and molecular interactions with angstrom resolution, and single-molecule detection-based super-resolution (SR) imaging, which can enhance the spatial resolution approximately ten to twentyfold compared to diffraction-limited microscopy. Here we present a customer-designed integrated system, which merges multiple imaging methods in one microscope, including conventional epi-fluorescent imaging, single-molecule detection-based SR imaging, and multi-color single-molecule detection, including smFRET imaging. Different imaging methods can be achieved easily and reproducibly by switching optical elements. This set-up is easy to adopt by any research laboratory in biological sciences with a need for routine and diverse imaging experiments at a reduced cost and space relative to building separate microscopes for individual purposes.
Fluorescence microscopes are important tools for the modern biological science research and fluorescent imaging is routinely performed in many biology laboratories. By tagging biomolecules of interest with fluorophores, we can directly visualize them under the microscope and record the time-dependent changes in localization, conformation, interaction, and assembly state in vivo or in vitro. Conventional fluorescence microscopes have a diffraction-limited spatial resolution, which is ~200 - 300 nm in the lateral direction and ~500 - 700 nm in the axial direction1,2, and are, therefore, limited to imaging at the 100s of nanometers-to-micron scale. In order to reveal finer details in the molecular assembly or organization, various SR microscopies that can break the diffraction limit have been developed. Strategies used to achieve SR include non-linear optical effects, such as stimulated emission depletion (STED) microscopy3,4 and structured illumination microscopy (SIM)5,6,7, stochastic detection of single molecules, such as stochastic optical reconstruction microscopy (STORM)8 and photoactivated localization microscopy (PALM)9, and a combination of both, such as MINFLUX10. Among these SR microscopies, single-molecule detection-based SR microscopes can be relatively easily modified from a single-molecule microscope set-up. With repetitive activation and imaging of photoactivatable fluorescent proteins (FPs) or photo-switchable dyes tagged on biomolecules of interest, spatial resolution can reach 10 - 20 nm11. To gain information on molecular interactions and conformational dynamics in real-time, angstrom-to-nanometer resolution is required. smFRET12,13 is one approach to achieve this resolution. Generally, depending on the biological questions of interest, imaging methods with different spatial resolutions are needed.
Typically, for each type of imaging, specific excitation and/or emission optical configuration is needed. For instance, one of the most commonly used illumination methods for single-molecule detection is through total internal reflection (TIR), in which a specific excitation angle needs to be achieved either through a prism or through the objective lens. For smFRET detection, emissions from both donor and acceptor dyes need to be spatially separated and directed to different parts of the electron-multiplying, charge-coupled device (EMCCD), which can be achieved with a set of mirrors and dichroic beam splitters placed in the emission path. For three-dimensional (3-D) SR imaging, an optical component, such as a cylindrical lens14, is needed to cause an astigmatism effect in the emission path. Therefore, homebuilt or commercially available integrated microscopes are, usually, functionally specialized for each type of imaging method and are not flexible to switch between different imaging methods on the same set-up. Here we present a cost-effective, hybrid system that provides adjustable and reproducible switches between three different imaging methods: conventional epi-fluorescent imaging with diffraction-limited resolution, single-molecule detection-based SR imaging, and multi-color single-molecule detection, including smFRET imaging (Figure 1A). Specifically, the set-up presented here contains fiber-coupled input lasers for multi-color excitation and a commercial illumination arm in the excitation path, which allows programmed control of the excitation angle, to switch between epi-mode and TIR mode. In the emission path, a removable homebuilt cylindrical lens cassette is placed within the microscope body for 3-D SR imaging, and a commercial beam splitter is placed before an EMCCD camera that can be selectively enabled to detect multiple emission channels simultaneously.
1. Microscope Design and Assembly
2. Emission path
NOTE: The emission path is composed of a removable cylindrical lens, a barrier filter wheel, an emission splitter, and an EMCCD camera (Figure 1G). To attain the best point spread function (PSF) of single molecules, the DIC prism is put away from the objective lens.
3. Diffraction-limited Imaging with Epi-excitation
4. Multi-channel Single-molecule Imaging Including smFRET
NOTE: Move to an “empty” position in the barrier filter wheel, so that all the emission with any wavelength can reach to the second set of filters/dichroic beam splitters in the emission splitter.
5. SR Imaging
NOTE: This is single-molecule detection-based SR microscopy.
This microscope allows flexible and reproducible switching between different imaging methods. Here we show sample images collected with each imaging module.
Figure 5D demonstrates the PSF of the blinking-on molecule during the SR acquisition. Thousands of such images are reconstructed to generate the final SR image (Figure 5E). Figure 5E sh...
This hybrid microscope system eliminates the need to purchase multiple microscopes. The total cost for all parts, including the optical table, table installation labor, software, and workstation, is about $230,000. Custom-machined parts, including the mag lens and 3-D lens, cost around $700 (the cost depends on the actual charges at different institutes). Typical commercially available integrated systems for single-molecule detection-based SR microscopy cost more than $300,000 ~ 400,000 and are not readily available for ...
The authors have nothing to disclose.
J.F. acknowledges support from the Searle Scholars Program and the NIH Director's New Innovator Award. The authors acknowledge useful suggestions from Paul Selvin's lab (University of Illinois, Urbana-Champaign) for positioning the 3-D lens.
Name | Company | Catalog Number | Comments |
Nikon Ti-E microscope stand | Nikon | Ti-E | |
Objective lens | Nikon | 100X NA 1.49 CFI HP TIRF | |
Microscopy imaging software | Nikon | NIS-Elements Advanced Research/HC | HC includes "JOBS" module, the programmed acquisition module being used for SR imaging. |
The illumination arm | Nikon | Ti-TIRF-EM Motorized Illuminator Unit M | This arm has a slot for a magnification lens |
Analyze block | Nikon | Ti-A | This is installed in the filter turret. |
Z-drift correction system | Nikon | PFS | This system is composed by the stepmotor on the objective nosepiece, IR LED, and a detector. |
Optical table top | TMC | 783-655-02R | |
Optical table bases | TMC | 14-426-35 | |
647 nm laser | Cobolt | 90346 (0647-06-01-0120-100) | Modulated Laser Diode 647nm 120mW incl. laser head, CDRH control box, USB cable and PSU (Power Supply Unit) |
561 nm laser | Coherent | 1280721 | OBIS 561nm LS 150mW Laser System |
488 nm laser | Cobolt | 90308 (0488-06-01-0060-100) | Modulated Laser Diode 488nm 60mW incl. laser head, CDRH control box, USB cable and PSU (Power Supply Unit) |
405 nm laser | Crystalaser | DL405-025-O | 405 (+/-5)nm, 25mW, Circular , M2 <1.3, Low Noise, CW, TTL up to 20MHz. 2 BNC connectors for TTL & Analog adjust |
Heat sink | Cobolt | 11658 (HS-03) | Two units, Heat sink without fan HS-03, Heat sink for 647 nm and 488 nm lasers |
Heat sink | Coherent | 1193289 | Obis heat sink with fan, 165 x 50 x 50 mm for the 561 nm laser |
CAB-USB-miniUSB | Cobolt | 10908 | Two units, communication cable for 647 nm and 488 nm lasers |
aluminum for height adjustment | McMaster-Carr | 9146T35 | Multipurpose 6061 Aluminum, Rectangular Bar, 4MM X 40MM, 1' Long for raising 561 nm laser |
aluminum for height adjustment | McMaster-Carr | 8975K248 | Multipurpose 6061 Aluminum, 1-1/4" Thick X 3" Width X 1' Length for raising 405 nm laser |
BNC cable | L-com | CC58C-6 | RG58C Coaxial Cable, BNC Male / Male, 6.0 ft |
BNC adapter | L-com | BA1087 | Coaxial Adapter, BNC Bulkhead, Grounded |
SMA to BNC Adapter | HOD | SMA-870 | Cobolt MLD lasers have SMA interface, so this adapter is used for BNC connection. |
SMB to BNC Adapter | Fairview Microwave | FMC1638316-12 | SMB Plug to BNC Female Bulkhead Cable RG316 Coax in 12 Inch for Coherent Obis lasers |
Data Acquisition Card | National Instruments | PCI-6723 | 13-Bit, 32 Channels, 800 kS/s Analog Output Device for controlling lasers, DIC LED, and etc |
Barrier Filter Wheel controller | Sutter Instrument | Lambda 10-B | Optical Filter Changer |
Emission Splitter | Cairn | OptoSplit III | |
Dichroic beamsplitter | Chroma | T640LPXR-UF2 | Dichroic beamsplitter separating red emission from green emission in OptoSplit III |
Dichroic beamsplitter | Chroma | T565LPXR-UF2 | Dichroic beamsplitter separating green & red emission from blue emission in OptoSplit III |
Emission filter | Chroma | ET700/75M | Two units, Emission filter for red emission (like Alexa Fluor 647) in OptoSplit III as well as in the Barrier filter wheel |
Emission filter | Chroma | ET595/50M | Two units, Emission filter for yellow/green emission (like Cy3B) in OptoSplit III as well as in the Barrier filter wheel |
Emission filter | Chroma | ET525/50M | Two units, Emission filter for blue emission(like Alexa Fluor 488/GFP) in OptoSplit III as well as in the Barrier filter wheel |
Emission filter | Semrock | FF02-447/60-25 | Emission filter for violet emission (like DAPI/Alexa Fluor 405), installed in the Barrier filter wheel |
Dichroic beamsplitter | Chroma | zt405/488/561/647/752rpc-UF3 | Multiband dichroic beam splitter for 647, 561, 488, and 405 nm laser excitations inside of the microscope body |
DAPI Filter set | Chroma | 49000 | installed in the microscope body |
Nikon laser/TIRF filtercube | Chroma | 91032 | |
590 long pass filter | Chroma | T590LPXR-UF1 | for combining 647 nm laser and 561 nm laser |
525 long pass filter | Chroma | T525LPXR-UF1 | for combining already combined 647 nm and 561nm lasers with 488 nm laser |
470 long pass filter | Chroma | T470LPXR-UF1 | for combining already combined 647 nm, 561 nm and 488 nm lasers with 405 nm laser |
Laser clean-up filter (647) | Chroma | zet640/20x | for cleaning up other wavelengths from the 647 nm laser |
Laser clean up filter (488) | Semrock | LL01-488-25 | for cleaning up other wavelengths from the 488 nm laser |
LED light source | Excelitas | X-Cite120LED | used only for DAPI imaging |
Mirror mount | Newport | SU100-F3K | |
Optical posts | Newport | PS-2 | |
Clamping fork | Newport | PS-F | |
Power Meter | Newport | PMKIT | For measuring laser power |
Dichroic beamcombiner mount | Edmund Optics | 58-872 | C-Mount Kinematic Mount, for holding dichroic beamcombiners in the laser excitation assembly |
Retaining ring | Thorlabs | CMRR | used for dichroic beamcombiner mounts |
Fiber Adapter Plate | Thorlabs | SM1FC | FC/PC Fiber Adapter Plate with External SM1 (1.035"-40) Thread |
Z-axis translational mount | Thorlabs | SM1Z | Z-Axis Translation Mount, 30 mm Cage Compatible |
Achromatic Doublet lens | Thorlabs | AC050-008-A-ML | Ø5 mm, Mounted Achromatic Doublets, AR Coated: 400 - 700 nm |
Cage Plate | Thorlabs | CP1TM09 | 30 mm Cage Plate with M9 x 0.5 Internal Threads, 8-32 Tap |
Cage Assembly Rod | Thorlabs | ER4 | Cage Assembly Rod, 4" Long, Ø6 mm |
Cage Mounting Bracket | Thorlabs | CP02B | 30 mm Cage Mounting Bracket |
Single mode optical fiber | Thorlabs | P5-405BPM-FC-2 | Patch Cable, PM, FC/PC to FC/APC, 405 nm, Panda, 2 m |
Multi mode optical fiber | Thorlabs | M42L01 | Ø50 µm, 0.22 NA, FC/PC-FC/PC Fiber Patch Cable, 1 m |
Achromatic Doublet lens (mag lens) | Thorlabs | ACN127-025-A | ACN127-025-A - f=-25.0 mm, Ø1/2" Achromatic Doublet, ARC: 400-700 nm , a concave lens in the "mag lens" |
Achromatic Doublet lens (mag lens) | Thorlabs | AC127-050-A | f=50.0 mm, Ø1/2" Achromatic Doublet, ARC: 400-700 nm, a convex lens in the "mag lens" |
Retaining ring | Thorlabs | SM05PRR | SM05 Plastic Retaining Ring for Ø1/2" Lens Tubes and Mounts, for "mag lens" |
Nylon-tipped screw | Thorlabs | SS3MN6 | M3 x 0.5 Nylon-Tipped Setscrew, 6 mm Long, for holding "3D lens" |
3D lens | CVI Laser Optics | RCX-25.4-50.8-5000.0-C-415-700 | f=10 m, rectangular cylindrical lens |
EMCCD camera | Andor | iXon Ultra 888 | |
100 nm multichannel beads | Thermo | T7279, TetraSpeck microspheres | |
red dye | Thermo | Alexa Fluor 647 | |
yellow-green dye | GE Healthcare | Cy3 | |
green dye | GE Healthcare | Cy3B | |
blue dye | Thermo | Alexa Fluor 488 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone