JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

Conducting Multiple Imaging Modes with One Fluorescence Microscope

Published: October 28th, 2018

DOI:

10.3791/58320

1Department of Biochemistry and Molecular Biology, University of Chicago, 2The Institute for Biophysical Dynamics, University of Chicago, 3Faculty of Chemistry, Wrocław University of Science and Technology, 4Nikon Instruments Inc.

Fluorescence microscopy is a powerful tool to detect biological molecules in situ and monitor their dynamics and interactions in real-time. In addition to conventional epi-fluorescence microscopy, various imaging techniques have been developed to achieve specific experimental goals. Some of the widely used techniques include single-molecule fluorescence resonance energy transfer (smFRET), which can report conformational changes and molecular interactions with angstrom resolution, and single-molecule detection-based super-resolution (SR) imaging, which can enhance the spatial resolution approximately ten to twentyfold compared to diffraction-limited microscopy. Here we present a customer-designed integrated system, which merges multiple imaging methods in one microscope, including conventional epi-fluorescent imaging, single-molecule detection-based SR imaging, and multi-color single-molecule detection, including smFRET imaging. Different imaging methods can be achieved easily and reproducibly by switching optical elements. This set-up is easy to adopt by any research laboratory in biological sciences with a need for routine and diverse imaging experiments at a reduced cost and space relative to building separate microscopes for individual purposes.

Tags

Keywords Fluorescence Microscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved