Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol to process fresh bone marrow (BM) isolated from mouse or human for high-dimensional mass cytometry (Cytometry by Time-Of-Flight, CyTOF) analysis of neutrophil-lineage cells.
In this article, we present a protocol that is optimized to preserve neutrophil-lineage cells in fresh BM for whole BM CyTOF analysis. We utilized a myeloid-biased 39-antibody CyTOF panel to evaluate the hematopoietic system with a focus on the neutrophil-lineage cells by using this protocol. The CyTOF result was analyzed with an open-resource dimensional reduction algorithm, viSNE, and the data was presented to demonstrate the outcome of this protocol. We have discovered new neutrophil-lineage cell populations based on this protocol. This protocol of fresh whole BM preparation may be used for 1), CyTOF analysis to discover unidentified cell populations from whole BM, 2), investigating whole BM defects for patients with blood disorders such as leukemia, 3), assisting optimization of fluorescence-activated flow cytometry protocols that utilize fresh whole BM.
In the past few decades, cytometry methods have been a powerful tool to investigate the hematopoietic system in the BM. These methods include fluorescence-activated flow cytometry and the new method of CyTOF using heavy metal-labeled antibodies. They have led to discoveries of many cell types in a heterogeneous biological specimen by identification of their unique surface marker expression profiles. Increased spectrum overlaps that’s associated with more channels leads to higher data inaccuracy in fluorescence-activated flow cytometry applications. Therefore, unwanted cells are routinely removed in order to enrich cell populations of interest for fluorescence-activated flow cytometry analysis. For example, Ly6G (or Gr-1) and CD11b are considered mature myeloid cell markers and Ly6G+ (or Gr-1+) and CD11b+ cells are routinely removed from BM samples by using magnetic enrichment kits prior to flow cytometry analysis of hematopoietic stem and progenitor cells (HSPCs) or by combining these markers in one dump cocktail channel1,2,3. Another example is that neutrophils are routinely removed from human blood specimen to enrich peripheral blood mononuclear cells (PBMC) for immunological studies. Whole bone marrow isolated from mouse or human, however, is rarely investigated intact for cytometry analysis.
Recently, CyTOF has become a revolutionary tool to investigate the hematopoietic system4,5,6. With CyTOF, the fluorophore-labeled antibodies are replaced by heavy element reporter-labeled antibodies. This method allows for the measurement of over 40 markers simultaneously without the concern of spectrum overlap. It has enabled the analysis of intact biological specimen without pre-depletion steps or a dump channel. Therefore, we can view the hematopoietic system comprehensively with high-content dimensionality from conventional 2-D flow cytometry plots. Cell populations omitted in the past during depletion or gating process can now be brought into light with the high-dimensional data generated by CyTOF4,5. We have designed an antibody panel that simultaneously measures 39 parameters in the hematopoietic system with a focus on the myeloid linage7. Compared to the conventional flow cytometry data, the interpretation and visualization of the unprecedented single-cell high-dimensional data generated by CyTOF is challenging. Computational scientists have developed dimensionality reduction techniques for the visualization of high-dimensional datasets. In this article, we used the algorithm, viSNE, which uses t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to analyze the CyTOF data and to present the high-dimensional result on a 2-dimensional map while conserving the high-dimensional structure of the data8,9,10. On the tSNE plot, similar cells are clustered into subsets and the color is used to highlight the feature of the cells. For example, on Figure 1 the myeloid cells are distributed into several cell subsets based on the similarities of their expression patterns of 33 surface markers resulted from CyTOF (Figure 1)4. Here we investigated mouse bone marrow with our previously reported 39-marker CyTOF panel by viSNE analysis7. viSNE analysis of our CyTOF data revealed an unidentified cell population that showed both HSPC (CD117+) and neutrophil (Ly6G+) characteristics (Figure 2)7.
In conclusion, we present a protocol to process fresh whole bone marrow for CyTOF analysis. In this article, we used mouse bone marrow as an example, while this protocol can also be used to process human bone marrow samples. The details specific to human bone marrow samples are also noted in the protocol as well. The advantage of this protocol is that it contains details such as incubation time and temperature that were optimized to preserve neutrophil-lineage cells in the whole bone marrow to enable investigation on the intact whole bone marrow. This protocol may also be easily modified for fluorescence-activated flow cytometry applications.
Access restricted. Please log in or start a trial to view this content.
All experiments followed approved guidelines of the La Jolla Institute for Allergy and Immunology Animal Care and Use Committee, and approval for the use of rodents was obtained from the La Jolla Institute for Allergy and Immunology according to criteria outlined in the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health.
1. Harvest Mouse Bone Marrow (BM)
2. Stain BM Cells for CyTOF
3. Prepare Cells for CyTOF Acquisition
Access restricted. Please log in or start a trial to view this content.
Figure 1 is presented as an example result from CyTOF experiments. On this tSNE plot the cells across multiple mouse tissues were clustered into subsets based on the similarity of their surface marker expression profiles measured by a 33-parameter CyTOF panel. Cells with more similar properties were automatically clustered together such as the neutrophils, macrophages, or the DCs based on the expression of the 33 markers on each cell.
Figure 2...
Access restricted. Please log in or start a trial to view this content.
In past decades, fluorescence-based flow cytometry was used as the main method to study cellular lineages and heterogeneity1,2,3. Although flow cytometry has provided multi-dimensional data, this method is limited by choices of parameters and spectral overlap. To overcome the weakness of flow cytometry we took advantage of CyTOF, which uses heavy metal isotopes instead of fluorophores to label antibodies that eliminates crosstal...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We would like to thank the LJI Flow Cytometry core for assistance with mass cytometry procedure. This work was supported by NIH grants R01HL134236, P01HL136275, and R01CA202987 (all to C.C.H) and ADA7-12-MN-31 (04) (to C.C.H. and Y.P.Z).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
CyTOF Antibodies (mouse) | |||
Anti-Mouse CD45 (Clone 30-F11) -89Y | Fluidigm | Cat# 3089005B | |
Anti-Human/Mouse CD45R/B220 (Clone RA36B2)-176Yb | Fluidigm | Cat# 3176002B | |
Anti-mouse CD105 (Clone MJ7/18)-Purified | Biolegend | Cat# 120402; RRID:AB_961070 | |
Anti-mouse CD115 (CSF-1R) (Clone AFS98)-Purified | Biolegend | Cat# 135502; RRID:AB_1937293 | |
Anti-Mouse CD117/c-kit (Clone 2B8)-166Er | Fluidigm | Cat# 3166004B | |
Anti-mouse CD11a (Clone M17/4)-Purified | Biolegend | Cat# 101101; RRID:AB_312774 | |
Anti-Mouse CD11b (Clone M1/70)-148Nd | Fluidigm | Cat# 3148003B | |
Anti-Mouse CD11c (Clone N418)-142Nd | Fluidigm | Cat# 3142003B | |
Anti-mouse CD127 (IL-7Rα) (Clone A7R34)-MaxPar Ready | Biolegend | Cat# 133919; RRID:AB_2565433 | |
Anti-Mouse CD150 (Clone TC1512F12.2)-167Er | Fluidigm | Cat# 3167004B | |
Anti-mouse CD16.2 (FcγRIV) (Clone 9E9)-Purified | Biolegend | Cat# 149502; RRID:AB_2565302 | |
Anti-Mouse CD162 (Clone 4RA10 (RUO))-Purified | BD Biosciences | Cat# 557787; RRID:AB_647340 | |
Anti-mouse CD169 (Siglec-1) (Clone 3D6.112)-Purified | Biolegend | Cat# 142402; RRID:AB_10916523 | |
Anti-mouse CD182 (CXCR2) (Clone SA044G4)-Purified | Biolegend | Cat# 149302; RRID:AB_2565277 | |
Anti-mouse CD183 (Clone CXCR3-173)-Purified | Biolegend | Cat# 126502; RRID:AB_1027635 | |
Anti-mouse CD335 (NKp46) (Clone 29A1.4)-MaxPar Ready | Biolegend | Cat# 137625; RRID:AB_2563744 | |
Anti-mouse CD34 (Clone MEC14.7)-Purified | Biolegend | Cat# 119302; RRID:AB_345280 | |
Anti-mouse CD41 (Clone MWReg30)-MaxPar Ready | Biolegend | Cat# 133919; RRID:AB_2565433 | |
Anti-Mouse CD43 (Clone S11)-146Nd | Fluidigm | Cat# 3146009B | |
Anti-Mouse CD48 (Clone HM48.1)-156Gd | Fluidigm | Cat# 3156012B | |
Anti-mouse CD62L (Clone MEL-14)-MaxPar Ready | ThermoFisher | Cat# 14-1351-82; RRID:AB_467481 | |
Anti-mouse CD71 (Clone RI7217)-Purified | Biolegend | Cat# 113802; RRID:AB_313563 | |
Anti-mouse CD90 (Clone G7)-Purified | Biolegend | Cat# 105202; RRID:AB_313169 | |
Anti-Mouse F4/80 (Clone BM8)-159Tb | Fluidigm | Cat# 3159009B | |
Anti-mouse FcεRIα (Clone MAR-1)-MaxPar Ready | Biolegend | Cat# 134321; RRID:AB_2563768 | |
Anti-mouse GM-CSF (MP1-22E9 (RUO))-Purified | BD Biosciences | Cat# 554404; RRID:AB_395370 | |
Anti-Mouse I-A/I-E (Clone M5/114.15.2)-174Yb | Fluidigm | Cat# 3174003B | |
Anti-Mouse Ki67 (Clone B56 (RUO))-Purified | BD Biosciences | Cat# 556003; RRID:AB_396287 | |
Anti-Mouse Ly-6A/E (Sca-1) (Clone D7)-169Tm | Fluidigm | Cat# 3169015B | |
Anti-Mouse Ly6B (Clone 7/4)-Purified | abcam | Cat# ab53457; RRID:AB_881409 | |
Anti-mouse Ly-6G (Clone 1A8)-MaxPar Ready | Biolegend | Cat# 127637; RRID:AB_2563784 | |
Anti-Mouse NK1.1 (Clone PK136)-165Ho | Fluidigm | Cat# 3165018B | |
Anti-Mouse Siglec-F (Clone E50-2440 (RUO))-Purified | BD Biosciences | Cat# 552125; RRID:AB_394340 | |
Anti-Mouse TCRβ (Clone H57-597)-143Nd | Fluidigm | (Clone H57-597)-143Nd | |
Anti-mouse TER-119/Erythroid Cells (Clone TER-119)-MaxPar Ready | Biolegend | Cat# 116241; RRID:AB_2563789 | |
Chemicals, Peptides and Recombinant Proteins | |||
Antibody Stabilizer | CANDOR Bioscience | Cat# 130050 | |
Bovine Serum Albumin | Sigma-Aldrich | Cat# A4503 | |
Cisplatin-194Pt | Fluidigm | Cat# 201194 | |
eBioscience 1x RBC Lysis Buffer | ThermoFisher | Cat# 00-4333-57 | |
eBioscience Foxp3 / Transcription Factor Staining Buffer Set | ThermoFisher | Cat# 00-4333-57 | |
EQ Four Element Calibration Beads | Fluidigm | Cat# 201078 | |
Ethylenediaminetetraacetic acid (EDTA) | ThermoFisher | Cat# AM9260G | |
Fetal Bovine Serum | Omega Scientific | Cat# FB-02 | |
HyClone Phosphate Buffered Saline solution | GE Lifesciences | Cat#SH30256.01 | |
Intercalator-Ir | Fluidigm | Cat# 201192B | |
MAXPAR Antibody Labeling Kits | Fluidigm | http://www.dvssciences.com/product-catalog-maxpar.php | |
Paraformaldehyde | Sigma-Aldrich | Cat# 158127 | |
Sodium azide | Sigma-Aldrich | Cat# S2002 | |
Triton X-100 | Sigma-Aldrich | Cat# X100 | |
Trypsin EDTA 1x | Corning | Cat# 25-053-Cl | |
Experimental Model: Organism/Strains | |||
Mouse: C57BL/6J | The Jackson Laboratory | Stock No: 000664 | |
Software Alogrithm | |||
Bead-based Normalizer | Finck et al., 2013 | https://med.virginia.edu/flow-cytometry-facility/wp-content/uploads/sites/170/2015/10/3_Finck-Rachel_CUGM_May2013.pdf | |
Cytobank | Cytobank | https://www.cytobank.org/ | |
Cytofkit v1.r.0 | Chen et al., 2016 | https://bioconductor.org/packages/release/bioc/html/cytofkit.html | |
t-SNE | van der Maaten and Hinton, 2008 | https://cran.r-project.org/web/packages/Rtsne/index.html | |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone