JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to process fresh bone marrow (BM) isolated from mouse or human for high-dimensional mass cytometry (Cytometry by Time-Of-Flight, CyTOF) analysis of neutrophil-lineage cells.

Abstract

In this article, we present a protocol that is optimized to preserve neutrophil-lineage cells in fresh BM for whole BM CyTOF analysis. We utilized a myeloid-biased 39-antibody CyTOF panel to evaluate the hematopoietic system with a focus on the neutrophil-lineage cells by using this protocol. The CyTOF result was analyzed with an open-resource dimensional reduction algorithm, viSNE, and the data was presented to demonstrate the outcome of this protocol. We have discovered new neutrophil-lineage cell populations based on this protocol. This protocol of fresh whole BM preparation may be used for 1), CyTOF analysis to discover unidentified cell populations from whole BM, 2), investigating whole BM defects for patients with blood disorders such as leukemia, 3), assisting optimization of fluorescence-activated flow cytometry protocols that utilize fresh whole BM.

Introduction

In the past few decades, cytometry methods have been a powerful tool to investigate the hematopoietic system in the BM. These methods include fluorescence-activated flow cytometry and the new method of CyTOF using heavy metal-labeled antibodies. They have led to discoveries of many cell types in a heterogeneous biological specimen by identification of their unique surface marker expression profiles. Increased spectrum overlaps that’s associated with more channels leads to higher data inaccuracy in fluorescence-activated flow cytometry applications. Therefore, unwanted cells are routinely removed in order to enrich cell populations of interest for fluorescence-activated flow cytometry analysis. For example, Ly6G (or Gr-1) and CD11b are considered mature myeloid cell markers and Ly6G+ (or Gr-1+) and CD11b+ cells are routinely removed from BM samples by using magnetic enrichment kits prior to flow cytometry analysis of hematopoietic stem and progenitor cells (HSPCs) or by combining these markers in one dump cocktail channel1,2,3. Another example is that neutrophils are routinely removed from human blood specimen to enrich peripheral blood mononuclear cells (PBMC) for immunological studies. Whole bone marrow isolated from mouse or human, however, is rarely investigated intact for cytometry analysis.

Recently, CyTOF has become a revolutionary tool to investigate the hematopoietic system4,5,6. With CyTOF, the fluorophore-labeled antibodies are replaced by heavy element reporter-labeled antibodies. This method allows for the measurement of over 40 markers simultaneously without the concern of spectrum overlap. It has enabled the analysis of intact biological specimen without pre-depletion steps or a dump channel. Therefore, we can view the hematopoietic system comprehensively with high-content dimensionality from conventional 2-D flow cytometry plots. Cell populations omitted in the past during depletion or gating process can now be brought into light with the high-dimensional data generated by CyTOF4,5. We have designed an antibody panel that simultaneously measures 39 parameters in the hematopoietic system with a focus on the myeloid linage7. Compared to the conventional flow cytometry data, the interpretation and visualization of the unprecedented single-cell high-dimensional data generated by CyTOF is challenging. Computational scientists have developed dimensionality reduction techniques for the visualization of high-dimensional datasets. In this article, we used the algorithm, viSNE, which uses t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to analyze the CyTOF data and to present the high-dimensional result on a 2-dimensional map while conserving the high-dimensional structure of the data8,9,10. On the tSNE plot, similar cells are clustered into subsets and the color is used to highlight the feature of the cells. For example, on Figure 1 the myeloid cells are distributed into several cell subsets based on the similarities of their expression patterns of 33 surface markers resulted from CyTOF (Figure 1)4. Here we investigated mouse bone marrow with our previously reported 39-marker CyTOF panel by viSNE analysis7. viSNE analysis of our CyTOF data revealed an unidentified cell population that showed both HSPC (CD117+) and neutrophil (Ly6G+) characteristics (Figure 2)7.

In conclusion, we present a protocol to process fresh whole bone marrow for CyTOF analysis. In this article, we used mouse bone marrow as an example, while this protocol can also be used to process human bone marrow samples. The details specific to human bone marrow samples are also noted in the protocol as well. The advantage of this protocol is that it contains details such as incubation time and temperature that were optimized to preserve neutrophil-lineage cells in the whole bone marrow to enable investigation on the intact whole bone marrow. This protocol may also be easily modified for fluorescence-activated flow cytometry applications.

Access restricted. Please log in or start a trial to view this content.

Protocol

All experiments followed approved guidelines of the La Jolla Institute for Allergy and Immunology Animal Care and Use Committee, and approval for the use of rodents was obtained from the La Jolla Institute for Allergy and Immunology according to criteria outlined in the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health.

1. Harvest Mouse Bone Marrow (BM)

  1. Purchase C57BL/6J mice from a commercial vendor. Feed the standard rodent chow diet and house in microisolator cages in a pathogen-free facility.
  2. Use male mice, 6-10 weeks of age, for experimental purpose. Euthanize by CO2 inhalation followed by the cervical dislocation.
  3. Place the mouse onto a sterile surgical pad with the abdomen side up. Sterilize the skin of the abdomen and hindlimbs area by spraying 70% ethanol. Use a pair of dissecting surgical scissors to cut the abdominal cavity open.
  4. Remove the skin to expose hindlimbs. Use a pair of blunt-tip dressing forceps to hold the mouse tibia right below the ankle. Use another pair of curved dressing forceps to stabilize the tibia below the blunt-tip dressing forceps. Break the tibia and expose the bone by ripping off the muscle with the blunt-tip dressing forceps.
    NOTE: The tibia is loosely attached to the knee joint and can be easily picked out by using the blunt-tip dressing forceps.
  5. Place the tibia in cold 1x PBS.
  6. Next, move the stabilizing curved dressing forceps downward to the femur. Slide the blunt-tip dressing forceps below the knee joint and hold the kneecap. Dislocate the kneecap by gently pulling it up. Expose the femur by ripping off the muscle attached to the kneecap. Hold the exposed femur by the curved dressing forceps and cut the femur off from the bottom of the bone using dissecting surgical scissors.
  7. Place the femur in cold 1x PBS.
  8. Punch a hole in 0.5 mL microcentrifuge tube with an 18 G needle.
  9. Place both tibia and femur into the same 0.5 mL microcentrifuge tube with the open end of the bones facing downwards to the hole.
  10. Place the 0.5 mL tube containing both tibia and femur into a 1.7 mL microcentrifuge tube.
  11. Spin the double-layered tubes containing both tibia and femur at 5,510 x g for 30 s in the micro-centrifuge.
  12. Ensure that the BM is extracted from the bones and pelleted at the bottom of the tube. Toss the 0.5 mL tube containing the hallowed bones. The mouse BM is ready for next steps.
    NOTE: Human BM is harvested at clinical resources as previously described11.

2. Stain BM Cells for CyTOF

  1. Resuspend the BM in 1 mL 1x Red Blood Cell (RBC) lysis buffer. For human BM, resuspend the whole BM in a 10x volume of 1x Red Blood Cell (RBC) lysis buffer. Incubate for 10 min at room temperature (RT).
  2. Spin the tube at 350 x g for 5 min at 4 °C. For human BM, repeat step 2.1 and 2.2 before proceeding to step 2.3.
  3. Carefully aspirate the supernatant and leave the pellet undisrupted. Resuspend the pellet with 1 mL of cold 1x PBS. Filter the pellet into a 15 mL conical tube through a 70 μm cell strainer. The BM cells are now completely isolated into the tube from the muscle and bone debris. Wash the cells by adding 9 mL of cold 1x PBS into the tube.
  4. Spin the 15 mL tube at 350 x g for 5min at 4 °C.
  5. Carefully aspirate the supernatant and resuspend the BM cells with 10 mL cold PBS. Take an aliquot of cells for counting. Count cells using a hemocytometer.
  6. Aliquot 5 x 106 BM cells into a new 15 mL tube for CyTOF staining.
  7. Spin the 15 mL tube aliquot at 350 x g for 5 min at 4 °C.
  8. Carefully aspirate the supernatant and resuspend the BM cells with 125 nM Cisplatin in 1 mL of CyTOF Staining Buffer as a viability indicator for the sample. Incubate for 5 min at RT.
  9. After incubation, add 4 mL of CyTOF staining buffer to the tube. Spin the tube at 350 x g for 5 min at 4 °C. For human BM, add 10% human AB serum into the CyTOF staining buffer.
  10. Carefully aspirate the supernatant and resuspend the BM cells with 50 µL of Fc Receptor blocking solution. Incubate for 10 min at 4 °C. Skip this step for human BM.
  11. Add 50 µL of the homemade CyTOF antibody cocktail5 to the sample so the total staining volume is 100 μL. Gently pipette to mix. Incubate for 30 min at 4 °C. The final volume of the antibody cocktail is 100 μL for both mouse BM and human BM samples.
  12. Add 2 mL of CyTOF staining buffer to each tube following the incubation to wash the cells, spin the tube at 350 x g for 5 min at 4 °C.
  13. Repeat step 2.12 for a total of two washes.
  14. Prepare a fresh 1.6% formaldehyde solution from the 16% stock ampule. Dilute 1 part of the stock formaldehyde with 9 parts of 1x PBS.
  15. Carefully aspirate the supernatant and resuspend the pellet with 1 mL fresh 1.6% FA solution. Incubate for 15 min at RT.
  16. Spin the tube at 800 x g for 5 min at 4 °C.
  17. Carefully aspirate the supernatant and resuspend the cell pellet with 125 nM intercalation solution in 1 mL fix/perm buffer.
  18. Incubate the sample in intercalation solution overnight at 4 °C.

3. Prepare Cells for CyTOF Acquisition

  1. Gently vortex and spin cells at 800 x g for 5 min at 4 °C.
  2. Wash cells by adding 2 mL of CyTOF staining buffer, spin cells at 800 x g for 5 min at 4 °C and remove the supernatant by aspiration.
  3. Resuspend cells in 1 mL of diH2O. Reserve a small volume (approximately 10 µL) from each tube to count cells.
  4. Spin cells at 800 x g for 5 min at 4 °C.
  5. Repeat step 3.3 and 3.4.
  6. Carefully aspirate the supernatant and leave the cells in the pellet. The BM cells are now ready for resuspension to the concentration of 1 x 106 cells/mL for CyTOF acquisition.

Access restricted. Please log in or start a trial to view this content.

Results

Figure 1 is presented as an example result from CyTOF experiments. On this tSNE plot the cells across multiple mouse tissues were clustered into subsets based on the similarity of their surface marker expression profiles measured by a 33-parameter CyTOF panel. Cells with more similar properties were automatically clustered together such as the neutrophils, macrophages, or the DCs based on the expression of the 33 markers on each cell.

Figure 2...

Access restricted. Please log in or start a trial to view this content.

Discussion

In past decades, fluorescence-based flow cytometry was used as the main method to study cellular lineages and heterogeneity1,2,3. Although flow cytometry has provided multi-dimensional data, this method is limited by choices of parameters and spectral overlap. To overcome the weakness of flow cytometry we took advantage of CyTOF, which uses heavy metal isotopes instead of fluorophores to label antibodies that eliminates crosstal...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank the LJI Flow Cytometry core for assistance with mass cytometry procedure. This work was supported by NIH grants R01HL134236, P01HL136275, and R01CA202987 (all to C.C.H) and ADA7-12-MN-31 (04) (to C.C.H. and Y.P.Z).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
CyTOF Antibodies (mouse)
Anti-Mouse CD45 (Clone 30-F11) -89YFluidigmCat# 3089005B
Anti-Human/Mouse CD45R/B220 (Clone RA36B2)-176YbFluidigmCat# 3176002B
Anti-mouse CD105 (Clone MJ7/18)-PurifiedBiolegendCat# 120402; RRID:AB_961070
Anti-mouse CD115 (CSF-1R) (Clone AFS98)-PurifiedBiolegendCat# 135502; RRID:AB_1937293
Anti-Mouse CD117/c-kit (Clone 2B8)-166ErFluidigmCat# 3166004B
Anti-mouse CD11a (Clone M17/4)-PurifiedBiolegendCat# 101101; RRID:AB_312774
Anti-Mouse CD11b (Clone M1/70)-148NdFluidigmCat# 3148003B
Anti-Mouse CD11c (Clone N418)-142NdFluidigmCat# 3142003B
Anti-mouse CD127 (IL-7Rα) (Clone A7R34)-MaxPar ReadyBiolegendCat# 133919; RRID:AB_2565433
Anti-Mouse CD150 (Clone TC1512F12.2)-167ErFluidigmCat# 3167004B
Anti-mouse CD16.2 (FcγRIV) (Clone 9E9)-PurifiedBiolegendCat# 149502; RRID:AB_2565302
Anti-Mouse CD162 (Clone 4RA10 (RUO))-PurifiedBD BiosciencesCat# 557787; RRID:AB_647340
Anti-mouse CD169 (Siglec-1) (Clone 3D6.112)-PurifiedBiolegendCat# 142402; RRID:AB_10916523
Anti-mouse CD182 (CXCR2) (Clone SA044G4)-PurifiedBiolegendCat# 149302; RRID:AB_2565277
Anti-mouse CD183 (Clone CXCR3-173)-PurifiedBiolegendCat# 126502; RRID:AB_1027635
Anti-mouse CD335 (NKp46) (Clone 29A1.4)-MaxPar ReadyBiolegendCat# 137625; RRID:AB_2563744
Anti-mouse CD34 (Clone MEC14.7)-PurifiedBiolegendCat# 119302; RRID:AB_345280
Anti-mouse CD41 (Clone MWReg30)-MaxPar ReadyBiolegendCat# 133919; RRID:AB_2565433
Anti-Mouse CD43 (Clone S11)-146NdFluidigmCat# 3146009B
Anti-Mouse CD48 (Clone HM48.1)-156GdFluidigmCat# 3156012B
Anti-mouse CD62L (Clone MEL-14)-MaxPar ReadyThermoFisherCat# 14-1351-82; RRID:AB_467481
Anti-mouse CD71 (Clone RI7217)-PurifiedBiolegendCat# 113802; RRID:AB_313563
Anti-mouse CD90 (Clone G7)-PurifiedBiolegendCat# 105202; RRID:AB_313169
Anti-Mouse F4/80 (Clone BM8)-159TbFluidigmCat# 3159009B
Anti-mouse FcεRIα (Clone MAR-1)-MaxPar ReadyBiolegendCat# 134321; RRID:AB_2563768
Anti-mouse GM-CSF (MP1-22E9 (RUO))-PurifiedBD BiosciencesCat# 554404; RRID:AB_395370
Anti-Mouse I-A/I-E (Clone M5/114.15.2)-174YbFluidigmCat# 3174003B
Anti-Mouse Ki67 (Clone B56 (RUO))-PurifiedBD BiosciencesCat# 556003; RRID:AB_396287
Anti-Mouse Ly-6A/E (Sca-1) (Clone D7)-169TmFluidigmCat# 3169015B
Anti-Mouse Ly6B (Clone 7/4)-PurifiedabcamCat# ab53457; RRID:AB_881409
Anti-mouse Ly-6G (Clone 1A8)-MaxPar ReadyBiolegendCat# 127637; RRID:AB_2563784
Anti-Mouse NK1.1 (Clone PK136)-165HoFluidigmCat# 3165018B
Anti-Mouse Siglec-F (Clone E50-2440 (RUO))-PurifiedBD BiosciencesCat# 552125; RRID:AB_394340
Anti-Mouse TCRβ (Clone H57-597)-143NdFluidigm(Clone H57-597)-143Nd
Anti-mouse TER-119/Erythroid Cells (Clone TER-119)-MaxPar ReadyBiolegendCat# 116241; RRID:AB_2563789
Chemicals, Peptides and Recombinant Proteins
Antibody StabilizerCANDOR BioscienceCat# 130050
Bovine Serum AlbuminSigma-AldrichCat# A4503
Cisplatin-194PtFluidigmCat# 201194
eBioscience 1x RBC Lysis BufferThermoFisherCat# 00-4333-57
eBioscience Foxp3 / Transcription Factor Staining Buffer SetThermoFisherCat# 00-4333-57
EQ Four Element Calibration BeadsFluidigmCat# 201078
Ethylenediaminetetraacetic acid (EDTA)ThermoFisherCat# AM9260G
Fetal Bovine SerumOmega ScientificCat# FB-02
HyClone Phosphate Buffered Saline solutionGE LifesciencesCat#SH30256.01
Intercalator-IrFluidigmCat# 201192B
MAXPAR Antibody Labeling KitsFluidigmhttp://www.dvssciences.com/product-catalog-maxpar.php
ParaformaldehydeSigma-AldrichCat# 158127
Sodium azideSigma-AldrichCat# S2002
Triton X-100Sigma-AldrichCat# X100
Trypsin EDTA 1xCorningCat# 25-053-Cl
Experimental Model: Organism/Strains
Mouse: C57BL/6JThe Jackson LaboratoryStock No: 000664
Software Alogrithm
Bead-based NormalizerFinck et al., 2013https://med.virginia.edu/flow-cytometry-facility/wp-content/uploads/sites/170/2015/10/3_Finck-Rachel_CUGM_May2013.pdf
CytobankCytobankhttps://www.cytobank.org/
Cytofkit v1.r.0Chen et al., 2016https://bioconductor.org/packages/release/bioc/html/cytofkit.html
t-SNEvan der Maaten and Hinton, 2008https://cran.r-project.org/web/packages/Rtsne/index.html

References

  1. Akashi, K., Traver, D., Miyamoto, T., Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 404, 193-197 (2000).
  2. Iwasaki, H., Akashi, K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 26, 726-740 (2007).
  3. Manz, M. G., Miyamoto, T., Akashi, K., Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proceedings of the National Academy of Sciences. 99, 11872-11877 (2002).
  4. Becher, B., et al. High-dimensional analysis of the murine myeloid cell system. Nature Immunology. 15, 1181-1189 (2014).
  5. Bendall, S. C., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 332, 687-696 (2011).
  6. Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L., Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nature Methods. 13, 493-496 (2016).
  7. Zhu, Y. P., et al. Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow. Cell Reports. 24, 2329-2341 (2018).
  8. Van der Maaten, L. J. P., Hinton, G. E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research. 9, 2579-2605 (2008).
  9. Amir, E. A. D., et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology. 31, 545-552 (2013).
  10. van der Maaten, L., Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research. 9 (85), 2579-2065 (2008).
  11. Cloos, J., et al. Comprehensive Protocol to Sample and Process Bone Marrow for Measuring Measurable Residual Disease and Leukemic Stem Cells in Acute Myeloid Leukemia. Journal of Visualized Experiment. 133, 56386(2018).
  12. Bendall, S. C., Nolan, G. P., Roederer, M., Chattopadhyay, P. K. A deep profiler’s guide to cytometry. Trends in Immunology. 33, 323-332 (2012).
  13. Ley, K., et al. Neutrophils: New insights and open questions. Science Immunology. 3 (30), 4579(2018).
  14. Ng, L. G., Ostuni, R., Hidalgo, A. Heterogeneity of neutrophils. Nature Reviews in Immunology. , (2019).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Whole Bone MarrowMass CytometryNeutrophil lineage CellsSample PreparationMyeloid Cell PopulationsBone Marrow IsolationImmune CellsBiological Sample PreparationC57 Black MouseSurgical ProcedureReagent PreparationCyTOForumTroubleshootingVisual Demonstration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved