Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We demonstrate a method to determine successful or failed fertilization on the basis of sperm nuclear morphology in Arabidopsis double fertilization using an epifluorescence microscope.
Flowering plants have a unique sexual reproduction system called ‘double fertilization', in which each of the sperm cells precisely fuses with an egg cell or a central cell. Thus, two independent fertilization events take place almost simultaneously. The fertilized egg cell and central cell develop into zygote and endosperm, respectively. Therefore, precise control of double fertilization is essential for the ensuing seed development. Double fertilization occurs in the female gametophyte (embryo sac), which is deeply hidden and covered with thick ovule and ovary tissues. This pistil tissue construction makes observation and analysis of double fertilization quite difficult and has created the present situation in which many questions regarding the mechanism of double fertilization remain unanswered. For the functional evaluation of a potential candidate for fertilization regulator, phenotypic analysis of fertilization is important. To judge the completion of fertilization in Arabidopsis thaliana, the shapes of fluorescence signals labeling sperm nuclei are used as indicators. A sperm cell that fails to fertilize is indicated by a condensed fluorescence signal outside of the female gametes, whereas a sperm cell that successfully fertilizes is indicated by a decondensed signal due to karyogamy with the female gametes’ nucleus. The method described here provides a tool to determine successful or failed fertilization under in vivo conditions.
Flowering plants produce seeds through double fertilization, a process that is directly controlled by interactions between proteins localized on gamete plasma membrane1,2. Flowering plant male gametes, a pair of sperm cells, develop in pollen. A pollen tube that grows after pollination delivers a pair of sperm cells to female gametes, an egg cell and a central cell, which develop in an embryo sac. After the male and female gametes meet, proteins on the gamete surface promote recognition, attachment, and fusion to complete double fertilization. In previous studies, the male gamete membrane proteins GENERATIVE CELL SPECIFIC 1 (GCS1)/HAPLESS2 (HAP2)3,4 and GAMETE EXPRESSED 2 (GEX2)5 were identified as fertilization regulators involved in gamete fusion and attachment, respectively. We recently identified a male gamete-specific membrane protein, DUF679 DOMAIN MEMBRANE PROTEIN 9 (DMP9), as a fertilization regulator involved in gamete interaction. We found that a decrease of DMP9 expression results in significant inhibition of egg cell fertilization during double fertilization in A. thaliana6.
As double fertilization occurs in an embryo sac, which is embedded in an ovule that is further wrapped with ovary tissue, it is difficult to observe and analyze the states of double fertilization processes. For this reason, there are still many unclear points that hinder a complete understanding of the whole mechanism of double fertilization control. The establishment of observation techniques to trace the behavior of gametes during double fertilization under in vivo conditions is indispensable for the functional analysis of potential candidates for fertilization regulators. Recent studies have yielded marker lines where gamete subcellular structures are labeled with fluorescent proteins. In this article, we demonstrate a simple and quick protocol for observing double fertilization that has occurred in an embryo sac derived from artificially pollinated pistils. Using sperm cell nucleus marker line HTR10-mRFP7, the fertilization state of each female gamete can be discriminated on the basis of sperm nuclear signal morphology. Our protocol focusing on such a morphological change of the sperm nuclei at fertilization can efficiently obtain a sufficient amount of data for statistical proof. A DMP9-knockdown line with HTR10-mRFP background (DMP9KD/HTR10-mRFP) was used as male plants to show a single fertilization pattern. The protocol is also suitable for the functional analysis of other fertilization regulators.
1. Artificial Pollination
NOTE: Before starting the process, a pair of No. 5 forceps is required.
2. Preparation of Ovule for Observation
NOTE: The following items are required: a slide glass with double-sided tape attached, No. 5 forceps, a 27 G injection needle, and a dissecting microscope.
3. Microscopy
NOTE: In this protocol, we used an epifluorescence microscope equipped with a fluorescence filter cube (see Table of Materials), a digital camera, and the accompanying software.
Ovules from a pistil pollinated with DMP9KD/HTR10-mRFP were collected at 7-8 HAP and observed.
Most ovules contained two decondensed mRFP-labeled sperm nuclei at the egg cell (micropylar side) and central cell (charazal end side) nucleus positions, respectively (Figure 3A), indicating successful double fertilization. In addition, ovules containing a decondensed mRFP-labeled sperm...
HTR10-mRFP labels paternal chromatin (i.e., visualizes sperm cell nuclei), and the dynamics in double fertilization have been reported7. Immediately after release from a pollen tube, HTR10-mRFP-labeled sperm nuclei are still condensed. However, each of the sperm nuclei is decondensed upon merging with a fertilized female gamete nucleus at karyogamy three to four hours after gamete membrane fusion7. Unfertilized sperm cells remain condensed, as shown in an embryo sac in whic...
The authors have nothing to disclose.
This work was supported by Japan Society for the Promotion of Science KAKENHI grant (JP17H05832 to T. I.) and by funding from the Strategic Priority Research Promotion Program on Phytochemical Plant Molecular Sciences, Chiba University (Japan).
Name | Company | Catalog Number | Comments |
BX51 | Olympus | Epifluorescence microscope | |
Cover glass | Matsunami glass | C018181 | |
DMP9KD/HTR10-mRFP | Arabidopsis thaliana, HTR10-mRFP background Takahashi et al. (2018)6 | ||
Double-sided tape | Nichiban | NW-15S | 15 mm width |
DP72 | Olympus | Degital camera | |
Forceps | Vigor | Any No. 5 forceps are available | |
Growth chamber | Nihonika | LPH-411PFQDT-SP | |
HTR10-mRFP | Arabidopsis thaliana, ecotype Columbia-0 (Col-0) background Ingouff et al. (2007)7 | ||
Injection needle | Terumo | NN-2719S | 27 gauge |
Slide glass | Matsunami glass | S9443 | |
SZX9 | Olympus | Dissecting microscope | |
U-MRFPHQ | Olympus | Fluorescence Filter Cube (Excitation: BP535-555, Emission: BA570-625, Dichromatic mirror:DM565) | |
UPlanFL N 40x | Olympus | Objective lens (NA 1.3), oil-immersion | |
UPlanSApo 20x | Olympus | Objective lens (NA0.75), dry |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone