Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Esophageal reconstruction is a challenging procedure, and development of a tissue-engineered esophagus that enables regeneration of esophageal mucosa and muscle and that can be implanted as an artificial graft is necessary. Here, we present our protocol to generate an artificial esophagus, including scaffold manufacturing, bioreactor cultivation, and various surgical techniques.
The use of biocompatible materials for circumferential esophageal reconstruction is a technically challenging task in rats and requires an optimal implant technique with nutritional support. Recently, there have been many attempts at esophageal tissue engineering, but the success rate has been limited due to difficulty in early epithelization in the special environment of peristalsis. Here, we developed an artificial esophagus that can improve the regeneration of the esophageal mucosa and muscle layers through a two-layered tubular scaffold, a mesenchymal stem cell-based bioreactor system, and a bypass feeding technique with modified gastrostomy. The scaffold is made of polyurethane (PU) nanofibers in a cylindrical shape with a three-dimensional (3D) printed polycaprolactone strand wrapped around the outer wall. Prior to transplantation, human-derived mesenchymal stem cells were seeded into the lumen of the scaffold, and bioreactor cultivation was performed to enhance cellular reactivity. We improved the graft survival rate by applying surgical anastomosis and covering the implanted prosthesis with a thyroid gland flap, followed by temporary nonoral gastrostomy feeding. These grafts were able to recapitulate the findings of initial epithelialization and muscle regeneration around the implanted sites, as demonstrated by histological analysis. In addition, increased elastin fibers and neovascularization were observed in the periphery of the graft. Therefore, this model presents a potential new technique for circumferential esophageal reconstruction.
The treatment of esophageal disorders, such as congenital malformations and esophageal carcinomas, can lead to structural segment loss of the esophagus. In most cases, autologous replacement grafts, such as gastric pull-up conduits or colon interpositions, have been performed1,2. However, these esophageal replacements have a variety of surgical complications and reoperation risks3. Thus, the use of tissue-engineered esophagus scaffolds mimicking the native esophagus can be a promising alternative strategy for ultimately regenerating lost tissues4,5,6.
Although a tissue-engineered esophagus potentially offers an alternative to the current treatments of esophageal defects, there are significant barriers for its in vivo application. Postoperative anastomotic leakage and necrosis of the implanted esophageal scaffold inevitably lead to a lethal infection of the surrounding aseptic space, such as the mediastinum7. Therefore, it is extremely important to prevent food or saliva contamination in the wound and nasogastric tube. Gastrostomy or intravenous nutrition should be considered until primary wound healing is completed. To date, esophageal tissue engineering has been performed in large animal models because large animals can be fed only by intravenous hyperalimentation for 2-4 weeks after implantation of the scaffold8. However, such a nonoral feeding model has not been established for early survival after esophageal transplantation in small animals. This is because the animals were extremely active and uncontrollable, so they could not keep the feeding tube in their stomachs for an extended period of time. For this reason, there have been few cases of successful esophageal transplantation in small animals.
In view of the circumstances of esophageal tissue engineering, we designed a two-layer tubular scaffold consisting of electrospun nanofibers (inner layer; Figure 1A) and a 3D-printed strand (outer layer; Figure 1B) including a modified gastrostomy technique. The internal nanofiber is made of PU, a non-degradable polymer, and prevents the leakage of food and saliva. The external 3D printed strands are made of biodegradable polycaprolactone (PCL), which can provide mechanical flexibility and adapt to peristaltic movement. Human adipose-derived mesenchymal stem cells (hAD-MSCs) were seeded on the inner layer of the scaffold to promote re-epithelization. The nanofiber structure can facilitate initial mucosal regeneration by providing a structural extracellular matrix (ECM) environment for cell migration.
We have also increased the survival rate and bioactivity of the inoculated cells through bioreactor cultivation. The implanted scaffold was covered with a thyroid gland flap to enable more stable regeneration of the esophageal mucosa and muscle layer. In this report, we describe protocols for esophageal tissue engineering techniques, including scaffold manufacturing, mesenchymal stem cell-based bioreactor cultivation, a bypass feeding technique with modified gastrostomy, and a modified surgical anastomosis technique for circumferential esophageal reconstruction in a rat model.
Access restricted. Please log in or start a trial to view this content.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC No. 17-0164-S1A0) of the Seoul National University Hospital.
1. Scaffold Manufacturing
NOTE: Two-layered esophageal scaffolds are manufactured by combining electrospinning and 3D printing. The inner membrane of the tubular scaffold was fabricated by electrospinning polyurethane (PU) with rotating stainless steel mandrels as the collectors9.
2. Cell Seeding on the Grafts and Bioreactor Cultivation
NOTE: Human adipose-derived mesenchymal stem cells (hMSCs) purchased from a company were used without modification.
3. Surgical Preparation for Animal Surgery
NOTE: Surgical preparations are applied before both gastrostomy and esophageal transplantation.
4. Gastrostomy Surgery Using a T-tube in Rats
NOTE: A modified gastrostomy was performed in all experimental animals to allow temporary bypass nonoral tube feeding (n = 5).
5. Esophageal Transplantation
NOTE: The esophageal transplantation of the two-layered tubular scaffold is performed 1 week after the gastrostomy (n = 5). Prior to the transplantation, inoculate hMSCs (cell density: 1 x 106 cells/mL in basement membrane matrix) into the inner wall of each scaffold and incubate for 3 days in the bioreactor system. The surgical procedure is as follows.
6. Post-operative procedures
NOTE: Postoperative procedures are performed after both gastrostomy and esophageal transplantation.
7. Histology and immunohistochemistry
NOTE: For histological analysis, all of the esophageal tissue of the euthanized animals is extracted using surgical scissors. Hematoxylin and eosin staining and Masson's trichrome staining were performed using standard histological techniques. Immunohistochemistry was performed according to the following protocol.
Access restricted. Please log in or start a trial to view this content.
Figure 1 shows a schematic diagram of the manufacturing process of the PU-PCL two-layered tubular scaffold. The PU solution was electrospun from an 18 G needle to make a cylindrical internal structure with a thickness of 200 µm. Then, the melted PCL was printed on the outer wall of the PU nanofiber at regular intervals. The surface morphology of the inner and outer walls of the completed tubular scaffold can be seen in the scanning electron microscopy im...
Access restricted. Please log in or start a trial to view this content.
Existing animal studies on artificial esophagi are still limited by several critical factors. The ideal artificial esophageal scaffold should be biocompatible and have excellent physical properties. It should be able to regenerate the mucosal epithelium in the early postoperative period to prevent anastomotic leakage. Regeneration of the inner circular and outer longitudinal muscle layers is also important for functional peristalsis12,13.
Access restricted. Please log in or start a trial to view this content.
The bioreactor system designed for this study has been commercialized (model number: ACBF-100).
This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C0362) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1C1B2011132). The biospecimens and data used in this study were provided by the Biobank of Seoul National University Hospital, a member of Korea Biobank Network.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Metabolic cage | TEUNGDO BIO & PLANT | JD-C-66 | |
Zoletil (50 mg/g dose) | Virbac | 1000000188 | |
0.25% Trypsin-EDTA | Gibco | 25200-056 | |
1 mL Syringe | BD | 309659 | |
2% xylazine hydrochloride (Rumpun) | Byely | Q-0615-035 | |
4% paraformaldehyde | BIOSOLUTION | BP031 | |
4-0 Vicryl | ETHICON | W9443 | |
9-0 Vicryl | ETHICON | W2813 | |
Antibiotic gentamicin (Septopal). | Septopal | 0409-1207-03 | |
Bovine Serum Albumin (BSA) | Sigma | 5470 | |
Citrate Buffer, ph6.0, 10X | Sigma | C9999 | |
DAB PEROXIDASE SUBSTRATE KIT | VECTOR | SK4100 | |
Desmin | Santa Cruz | sc-23879 | |
Elastic stain kit | ScyTeK | ETS-1 | |
Ethanol | Merck | 100983 | |
Ethanol | Merck | 64-17-5 | |
Fetal Bovine Serun (FBS) | Gibco | 16000-044 | |
Glutaraldehyde | Sigma | 354400 | |
Goat anti-Mouse IgG (H+L) Secondary Antibody | ThermoFisher | A-11001 | |
Heparin cap | Hyupsung Medical | HS-T-05 | |
hMSC (STEMPRO) / growth medium (MesenPRO RSTM) | Invitrogen | R7788-110 | |
Horseradish peroxidase-conjugated kit (Vectastain) | VECTOR | PK7800 | |
Hydrogen peroxide | JUNSEI | 7722-84-1 | |
Keratin13 | Novus | NBP1-97797 | |
LIVE/DEAD Viability Assay Kit | Molecular Probes | L3224 | |
Matrigel | Corning | 354262 | |
N,N-dimethylformamide (DMF) | Sigma | 227056 | |
Nonadherent 24-well tissue culture plates. | Corning | 3738 | |
OsO4 | Sigma | O5500 | |
Petri dish | Eppendorf | 3072115 | |
Phosphate-buffered saline (PBS) | Gibco | 10010-023 | |
Phosphate-buffered saline (PBS), 10X | BIOSOLUTION | BP007a | |
Polycaprolactone (PCL) polymer | Sigma | 440744 | |
Polyurethane (PU+A2:A24) polymer | Lubrizol | 2363-80AE | |
Power Supply | NanoNC | HV100 | |
ProLong Gold antifade reagent with DAPI | Invitrogen | P36931 | |
Rumpun | Bayer | Q-0615-035 | |
Silicone T-tube | Sewoon Medical | 2206-005 | |
Terramycin Eye Ointment | Pfizer Pharmaceutical Korea | W01890011 | |
Tiletamine/Zolazepam (Zoletil) | Virbac Laboratories | Q-0042-058 | |
Trichrome stain kit | ScyTeK | TRM-1 | |
von Willebrand Factor (vWF) | Santa Cruz | sc 14014 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone