Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The functional genomic toolkit for the parasitic nematodes Strongyloides stercoralis and Strongyloides ratti includes transgenesis, CRISPR/Cas9-mediated mutagenesis, and RNAi. This protocol will demonstrate how to use intragonadal microinjection to introduce transgenes and CRISPR components into S. stercoralis and S. ratti.
The genus Strongyloides consists of multiple species of skin-penetrating nematodes with different host ranges, including Strongyloides stercoralis and Strongyloides ratti. S. stercoralis is a human-parasitic, skin-penetrating nematode that infects approximately 610 million people, while the rat parasite S. ratti is closely related to S. stercoralis and is often used as a laboratory model for S. stercoralis. Both S. stercoralis and S. ratti are easily amenable to the generation of transgenics and knockouts through the exogenous nucleic acid delivery technique of intragonadal microinjection, and as such, have emerged as model systems for other parasitic helminths that are not yet amenable to this technique.
Parasitic Strongyloides adults inhabit the small intestine of their host and release progeny into the environment via the feces. Once in the environment, the larvae develop into free-living adults, which live in feces and produce progeny that must find and invade a new host. This environmental generation is unique to the Strongyloides species and similar enough in morphology to the model free-living nematode Caenorhabditis elegans that techniques developed for C. elegans can be adapted for use with these parasitic nematodes, including intragonadal microinjection. Using intragonadal microinjection, a wide variety of transgenes can be introduced into Strongyloides. CRISPR/Cas9 components can also be microinjected to create mutant Strongyloides larvae. Here, the technique of intragonadal microinjection into Strongyloides, including the preparation of free-living adults, the injection procedure, and the selection of transgenic progeny, is described. Images of transgenic Strongyloides larvae created using CRISPR/Cas9 mutagenesis are included. The aim of this paper is to enable other researchers to use microinjection to create transgenic and mutant Strongyloides.
Strongyloides stercoralis has long been overlooked as an important human pathogen compared to the more widely recognized hookworms and the roundworm Ascaris lumbricoides1. Previous studies of worm burden often severely underestimated the prevalence of S. stercoralis due to the low sensitivity of common diagnostic methods for S. stercoralis2. In recent years, epidemiological studies based on improved diagnostic tools have estimated that the true prevalence of S. stercoralis infections is much higher than previously reported, approximately 610 million people worldwide2.
Both S. stercoralis and other Strongyloides species, including the closely related rat parasite and common lab model S. ratti, have an unusual life cycle that is advantageous for experimental genomic studies because it consists of both parasitic and free-living (environmental) generations3 (Figure 1). Specifically, both S. stercoralis and S. ratti can cycle through a single free-living generation. The free-living generation consists of post-parasitic larvae that develop into free-living adult males and females; all progeny of the free-living adults develop into infective larvae, which must infect a host to continue the life cycle. Furthermore, this environmental or free-living generation can be experimentally manipulated in the laboratory. Because free-living Strongyloides adults and C. elegans adults share similar morphology, techniques such as intragonadal microinjection that were originally developed for C. elegans can be adapted for use with free-living adult Strongyloides4,5. While DNA is generally introduced into free-living adult females, both males and females of Strongyloides can be microinjected6. Thus, functional genomic tools are available to interrogate many aspects of the biology of Strongyloides. Other parasitic nematodes lack a free-living generation, and as a result, are not as readily amenable to functional genomic techniques3.
Figure 1: The Strongyloides stercoralis life cycle. The S. stercoralis parasitic females inhabit the small intestine of their mammalian hosts (humans, non-human primates, dogs). The parasitic females reproduce by parthenogenesis and lay eggs within the small intestine. The eggs hatch while still inside the host into post-parasitic larvae, which are then passed into the environment with feces. If the post-parasitic larvae are male, they develop into free-living adult males. If the post-parasitic larvae are female, they can either develop into free-living adult females (indirect development) or third-stage infective larvae (iL3s; direct development). The free-living males and females reproduce sexually to create progeny that are constrained to become iL3s. Under certain conditions, S. stercoralis can also undergo autoinfection, in which some of the post-parasitic larvae remain inside the host intestine rather than passing into the environment in feces. These larvae can develop into autoinfective larvae (L3a) inside the host, penetrate through the intestinal wall, migrate through the body, and eventually return to the intestine to become reproductive adults. The life cycle of S. ratti is similar, except that S. ratti infects rats and does not have an autoinfective cycle. The environmental generation is key to using Strongyloides species for genetic studies. The free-living adult females (P0) can be microinjected; their progeny, which will all become iL3s, are the potential F1 transgenics. This figure has been modified from Castelletto et al.3. Please click here to view a larger version of this figure.
S. stercoralis shares many aspects of its biology with other gastrointestinal human-parasitic nematodes, including host invasion and host immune modulation. For example, human-parasitic hookworms in the genera Necator and Ancylostoma also infect by skin penetration, navigate similarly through the body, and ultimately reside as parasitic adults in the small intestine7. Thus, many gastrointestinal nematodes likely use common sensory behaviors and immune evasion techniques. As a result, the knowledge gleaned from Strongyloides will complement findings in other less genetically tractable nematodes and lead to a more complete understanding of these complex and important parasites.
This microinjection protocol outlines the method for introducing DNA into Strongyloides free-living adult females to make transgenic and mutant progeny. The strain maintenance requirements, including the developmental timing of adult worms for microinjections and the collection of transgenic progeny, are described. Protocols and a demonstration of the complete microinjection technique, along with protocols for culturing and screening transgenic progeny, are included, along with a list of all necessary equipment and consumables.
NOTE: Gerbils were used to passage S. stercoralis, and rats were used to passage S. ratti. All procedures were approved by the UCLA Office of Animal Research Oversight (Protocol No. 2011-060-21A), which adheres to AAALAC standards and the Guide for the Care and Use of Laboratory Animals. The following tasks must be completed at least one day before microinjecting: worm culturing, preparing microinjection pads, creating constructs for the microinjection mix, and spreading bacteria (E. coli HB101) onto 6 cm Nematode Growth Media (NGM) plates8. The free-living females require a minimum of 24 h post-fecal collection at 25 °C to develop into young adults before they can be microinjected. Microinjection pads must be completely dry. Bacterial plates must dry and establish a small lawn.
1. Preparation of microinjection slides: at least one day before injecting
NOTE: Worms are mounted on microinjection coverslips with dry agar pads for injection.
2. Culturing Strongyloides to obtain worms for microinjection: 1 - 2 days before injection
NOTE: A strain maintenance protocol can be found in the Supplemental Material, which includes a detailed description of how to infect gerbils and rats with nematodes and harvest nematodes from the feces of infected animals.
3. Making the microinjection mix: prior to or on the day of injection
NOTE: The microinjection mix consists of the plasmids of interest diluted to the desired concentration in worm buffered saline (BU) (50 mM Na2HPO4, 22 mM KH2PO4, 70 mM NaCl)11.
Microinjection mix: reporter construct | |||
Component | Stock Concentration | Amount | Final Concentration |
pMLC30 gpa-3::gfp | 300 ng/µL | 1.7 µL | 50 ng/µL |
BU | na | 8.3 µL | na |
total | 10 µL | 50 ng/µL | |
Microinjection mix: CRISPR/Cas9 mutagenesis | |||
Component | Stock Concentration | Amount | Final Concentration |
pMLC47 tax-4 sgRNA | 300 ng/µL | 2.7 µL | 80 ng/µL |
pEY11 Ss-tax-4 HDR plasmid | 400 ng/µL | 2.0 µL | 80 ng/µL |
pPV540 strCas9 plasmid | 350 ng/µL | 1.1 µL | 40 ng/µL |
BU | na | 4.2 µL | na |
total | 10 µL | 200 ng/µL | |
Microinjection mix: piggyBac integration | |||
Component | Stock Concentration | Amount | Final Concentration |
pMLC30 gpa3::gfp | 300 ng/µL | 2.0 µL | 60 ng/µL |
pPV402 transposase plasmid | 450 ng/µL | 0.9 µL | 40 ng/µL |
BU | na | 7.1 µL | na |
total | 10 µL | 100 ng/µL |
Table 1: Examples of microinjection mixes. The plasmids and concentrations for three example microinjection mixes: one for a gpa-3::GFP reporter construct10, one for CRISPR/Cas9-mediated disruption of the Ss-tax-4 locus14,15, and one for piggyBac-mediated integration of an Ss-gpa-3::GFP construct13,17,18. strCas9 denotes the Strongyloides codon-optimized Cas9 gene. The final concentrations listed are commonly used in Strongyloides microinjection mixes.
4. Collect young adult Strongyloides for microinjection: morning of the injection day
Figure 2: The Baermann apparatus used to collect parasitic worms from cultures10. The contents of a fecal-charcoal plate are placed at the top of a column of warm water. The worms migrate into the water and collect at the bottom of the funnel. (A) To set up the Baermann apparatus, the stand for the Baermann funnel is clamped to the bench with a C-clamp. A rubber tube attached to the end of the funnel is closed with pinch clamps, and a catch bucket is placed underneath the tube for drips. Warm water is added to the glass funnel. (B) The plastic ring holder for the fecal-charcoal mix is then lined with 3 pieces of laboratory tissues (left). A wooden stick or tongue depressor (middle) is used to transfer the contents of a fecal-charcoal plate (right) into the plastic ring holder. (C) A close-up of the bottom of the plastic ring holder for the fecal-charcoal mix, showing the double layer of nylon tulle lining the bottom of the holder. (D) The fecal-charcoal holder is then placed on the top of the glass funnel. (E) The laboratory tissue is dampened with water and closed over the fecal-charcoal mix. More warm water is added to mostly submerge the fecal-charcoal. (F) The complete Baermann setup, with the fecal-charcoal culture submerged under warm water. Please click here to view a larger version of this figure.
5. Pulling and loading microinjection needles: just before injection
Figure 3: Microinjection needles and a Strongyloides stercoralis adult female with optimal sites for microinjection identified. (A-F) Images of microinjection needles. (A-B) The shaft taper (A) and the tip (B) of a needle that is correctly shaped for microinjection. The tip is sharp enough to pierce the cuticle and narrow enough not to cause excessive damage. (C-D) The shaft taper (C) and the tip (D) of a microinjection needle that is incorrectly shaped for microinjecting. The tip is too blunt and wide, and will cause excessive damage to the worm. (E-F) The shaft taper (E) and the tip (F) of a needle that is likely to be too long and slender to work for microinjection. The tip in F is very similar to the tip in D. However, the shaft is narrower and too flexible to effectively pierce the cuticle. In addition, very slender needles clog easily. (G) An image of the whole worm correctly positioned for microinjection, assuming the needle is coming in from the right. Anterior is down and to the left; the vulva is indicated by the arrowhead. The gonad is visible along the right side of the female. This female has only one egg in her uterus (indicated by the asterisk). (H, I) Magnified views of the microinjection sites. The angle of the arrow approximates the angle of the injection needle. The vulva can be used as a landmark; it is on the opposite side of the worm from the arms of the gonad. The arms of the gonad curve around the intestine, and the ends with the dividing nuclei are opposite the vulva. (H) The posterior arm of the gonad; (I) the anterior arm. Either or both arms can be injected. For H, I, conventions are as in G. Scale bars = 50 µm (B, D, F, H, I); 100 µm (A, C, E, G). Please click here to view a larger version of this figure.
6. Preparing the microscope and breaking the needle
NOTE: Microinjection uses an inverted microscope with 5x and 40x objectives equipped with a microinjector setup to control the movement of the needle. The inverted microscope should be placed on a heavy table or anti-vibration air table to reduce vibrational noise. The microinjector needle holder is connected to nitrogen gas that applies the pressure needed to deliver the microinjection mix. A smaller dissecting microscope nearby is used to transfer the worms.
7. Microinjecting Strongyloides
8. Recovery and culturing of injected Strongyloides
9. Collecting and screening F 1 larvae to recover transgenics/knockouts
If the experiment was successful, the F1 larvae will express the transgene and/or mutant phenotype of interest (Figure 4). However, transformation rates are highly variable and depend on the constructs, the health of the worms, the post-injection culturing conditions, and the skill of the experimenter. In general, a successful experiment will yield >15 F1 larvae per injected female and a transformation rate of >3% for fluorescent markers. If the total number of ...
This microinjection protocol details the methods for introducing constructs for transgenesis and CRISPR/Cas9-mediated mutagenesis into S. stercoralis and S. ratti. For both S. stercoralis and S. ratti, post-injection survival and the rate of transgenesis or mutagenesis are subject to several variables that can be fine-tuned.
The first critical consideration for successful transgenesis is how plasmid transgenes are constructed. Previous st...
The authors declare no conflicts of interest.
pPV540 and pPV402 were kind gifts from Dr. James Lok at the University of Pennsylvania. We thank Astra Bryant for helpful comments on the manuscript. This work was funded by a Burroughs-Wellcome Fund Investigators in the Pathogenesis of Disease Award, a Howard Hughes Medical Institute Faculty Scholar Award, and National Institutes of Health R01 DC017959 (E.A.H.).
Name | Company | Catalog Number | Comments |
(−)-Nicotine, ≥99% (GC), liquid | Sigma-Aldrich | N3876-5ML | nicotine for paralyzing worms |
3" iron C-clamp, 3" x 2" (capacity x depth) | VWR | 470121-790 | C-clamp to secure setup to bench top |
Agarose LE | Phenix | RBA-500 | agarose for slides |
Bone char, 4 lb pail, 10 x 28 mesh | Ebonex | n/a | charcoal for fecal-charcoal cultures |
Bone char, granules, 10 x 28 mesh | Reade | bonechar10x28 | charcoal for fecal-cultures (alternative to the above) |
Coarse micromanipulator | Narishige | MMN-1 | coarse micromanipulator |
Corning Costar Spin-X centrifuge tube filters | Fisher | 07-200-385 | microfilter column |
Cover glass, 48 x 60 mm, No. 1 thickness | Brain Research Lab | 4860-1 | coverslips (48 x 60 mm) |
Deep Petri dishes, heavy version with 6 vents, 100 mm diameter | VWR | 82050-918 | 10 cm Petri dishes (for fecal-charcoal cultures) |
Eisco retort base w/ rod | Fisher | 12-000-101 | stand for Baermann apparatus |
Eppendorf FemtoJet microinjector microloader tips | VWR | 89009-310 | for filling microinjection needles |
Fisherbrand absorbent underpads | Fisher | 14-206-62 | bench paper (for prepping) |
Fisherbrand Cast-Iron Rings | Fisher | 14-050CQ | Baermann o-ring |
Fisherbrand tri-cornered polypropylene beakers | Fisher | 14-955-111F | Plastic beaker (for mixing) |
Fisherbrand tri-cornered polypropylene beakers | Fisher | 14-955-111F | Plastic beaker (for catch bucket/water bucket) |
Fisherbrand tri-cornered polypropylene beakers | Fisher | 14-955-111F | Plastic beaker (x2) (to make holder) |
Gorilla epoxie in syringe | McMaster-Carr | 7541A51 | glue (to attach tubing) |
Halocarbon oil 700 | Sigma-Aldrich | H8898-50ML | halocarbon oil |
High-temperature silicone rubber tubing for food and beverage, 1/2" ID, 5/8" OD | McMaster-Carr | 3038K24 | tubing (for funnel) |
KIMAX funnels, long stem, 60° Angle, Kimble Chase | VWR | 89001-414 | Baermann funnel |
Kimberly-Clark Professional Kimtech Science benchtop protectors | Fisher | 15-235-101 | bench paper (for prepping) |
Leica stereomicroscope with fluorescence | Leica | M165 FC | GFP stereomicroscope for identifying and sorting transgenic worms |
microINJECTOR brass straight arm needle-holder | Tritech | MINJ-4 | microinjection needle holder |
microINJECTOR system | Tritech | MINJ-1 | microinjection system |
Mongolian Gerbils | Charles River Laboratories | 213-Mongolian Gerbil | gerbils for maintenance of S. stercoralis, male 4-6 weeks |
Nasco Whirl-Pak easy-to-close bags, 18 oz | VWR | 11216-776 | Whirl-Pak sample bags |
Nylon tulle (mesh) | Jo-Ann Fabrics | zprd_14061949a | nylon mesh for Baermann holder |
Platinum wire, 36 Gauge, per inch | Thomas Scientific | 1233S72 | platinum/iridium wire for worm picks |
Puritan tongue depressors, 152 mm (L) x 17.5 mm (W) | VWR | 62505-007 | wood sticks (for mixing samples) |
QIAprep Spin Miniprep Kit (250) | QIAGEN | 27106 | QIAGEN miniprep kit |
Rats-Long Evans | Envigo | 140 HsdBlu:LE Long Evans | rats for maintenance of S. ratti, female 4-6 weeks |
Rats-Sprague Dawley | Envigo | 002 Hsd:Sprague Dawley SD | rats for maintenance of S. ratti, female 4-6 weeks |
Really Useful Boxes translucent storage boxes with lids, 1.6 L capacity, 7-5/8" x 5-5/16" x 4-5/16" | Office Depot | 452369 | plastic boxes for humidified chamber |
Shepherd techboard, 8 x 16.5 inches | Newco | 999589 | techboard |
Stainless steel raised wire floor | Ancare | R20SSRWF | wire cage bottoms |
StalkMarket compostable cutlery spoons, 6", white, pack of 1,000 | Office Depot | 9587303 | spoons |
Stender dish, stacking type, 37 x 25 mm | Carolina (Science) | 741012 | watch glasses (small, round) |
Stereomicroscope | Motic | K-400 LED | dissecting prep scope |
Storage tote, color clear/white, outside height 4-7/8 in, outside length 13-5/8 in, Sterilite | Grainger | 53GN16 | plastic boxes for humidified chamber |
Sutter P-30 micropipette puller | Sutter | P-30/P | needle puller with platinum/iridium filament |
Syracuse watch glasses | Fisher | S34826 | watch glasses (large, round) |
Thermo Scientific Castaloy fixed-angle clamps | Fisher | 05-769-2Q | funnel clamps (2x) |
Three-axis hanging joystick oil hydrolic micromanipulator | Narishige | MM0-4 | fine micromanipulator |
United Mohr pinchcock clamps | Fisher | S99422 | Pinch clamps (2x) |
Vented, sharp-edge Petri dishes (60 mm diameter) | Tritech Research | T3308P | 6 cm Petri dishes (for small-scale fecal-charcoal cultures) |
VWR light-duty tissue wipers | VWR | 82003-820 | lining for Baermann holder |
watch glass, square, 1-5/8 in | Carolina (Science) | 742300 | watch glasses (small, square) |
Whatman qualitative grade plain circles, grade 1, 5.5 cm diameter | Fisher | 09-805B | filter paper (for 6 cm Petri dishes) |
Whatman qualitative grade plain circles, grade 1, 9 cm diameter | Fisher | 09-805D | filter paper (for 10 cm Petri dishes) |
World Precision Instrument borosilicate glass capillary, 1.2 mm x 4 in | Fisher | 50-821-813 | glass capillaries for microinjection needles |
X-Acto Knives, No. 1 Knife With No. 11 Blade | Office Depot | 238816 | X-Acto knives without blades to hold worm picks |
Zeiss AxioObserver A1 | Zeiss | n/a | inverted microscope |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone