Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we deliver exogenous artificially synthesized miRNA mimics to the kidney via tail vein injection of a nonviral vector and polyethylenimine nanoparticles in several kidney disease mouse models. This led to significant overexpression of target miRNA in the kidney, resulting in inhibited progression of kidney disease in several mouse models.
microRNAs (miRNAs), small noncoding RNAs (21-25 bases) that are not translated into proteins, inhibit lots of target messenger RNAs (mRNAs) by destabilizing and inhibiting their translation in various kidney diseases. Therefore, alternation of miRNA expression by exogenous artificially synthesized miRNA mimics is a potentially useful treatment option for inhibiting the development of many kidney diseases. However, because serum RNAase immediately degrades systematically administered exogenous miRNA mimics in vivo, delivery of miRNA to the kidney remains a challenge. Therefore, vectors that can protect exogenous miRNA mimics from degradation by RNAase and significantly deliver them to the kidney are necessary. Many studies have used viral vectors to deliver exogenous miRNA mimics or inhibitors to the kidney. However, viral vectors may cause an interferon response and/or genetic instability. Therefore, the development of viral vectors is also a hurdle for the clinical use of exogenous miRNA mimics or inhibitors. To overcome these concerns regarding viral vectors, we developed a nonviral vector method to deliver miRNA mimics to the kidney using tail vein injection of polyethylenimine nanoparticles (PEI-NPs), which led to significant overexpression of target miRNAs in several mouse models of kidney disease.
miRNAs, small noncoding RNAs (21-25 bases) that are not translated into proteins, inhibit lots of target messenger RNAs (mRNAs) by destabilizing them and inhibiting their translation in various kidney diseases1,2. Therefore, gene therapy employing exogenous artificially synthesized miRNA mimics or inhibitors is a potential new option for inhibiting the development of many kidney diseases3,4,5.
Despite the promise of miRNA mimics or inhibitors for gene therapy, delivery to target organs remains a big hurdle for in vivo experiments to develop their clinical potential. Because artificially synthesized miRNA mimics or inhibitors are subject to immediate degradation by serum RNase, their half-life is shortened upon systemic administration in vivo6. Additionally, the efficiency of miRNA mimics or inhibitors to cross the plasma membrane and transfect cytoplasm is generally much lower without appropriate vectors7,8. These lines of evidence suggest that the development of the miRNA mimics or inhibitors delivery system for the kidney is required, to enable their use in clinical settings and make them a new treatment option for patients with various kidney diseases.
Viral vectors have been used as carriers to deliver exogenous miRNA mimics or inhibitors to the kidney9,10. Although they have been developed for biosafety and transfection efficacy, viral vectors may still cause an interferon response and/or genetic instability11,12. To overcome these concerns, we developed an miRNA mimics delivery system for the kidney using polyethylenimine nanoparticles (PEI-NPs), a nonviral vector, in several mouse models of kidney disease13,14,15.
PEI-NPs are linear polymer-based NPs that can effectively deliver oligonucleotides, including miRNA mimics, to the kidney, and are considered preferable for preparing nonviral vectors because of their long-term safety and biocompatibility13,16,17.
This study demonstrates the effects of systematic exogenous miRNA mimics delivery with PEI-NPs via tail vein injection in renal fibrosis model mice produced by unilateral ureter obstruction (UUO). Additionally, we demonstrate the effects of systematic exogenous miRNA mimic delivery with PEI-NPs via tail vein injection in diabetic kidney disease model mice (db/db mice: C57BLKS/J Iar -+Leprdb/+Leprdb) and acute kidney injury model mice produced by renal ischemia-reperfusion injury (IRI).
All animal experimental protocols were approved by the animal ethics committee of Jichi Medical University and performed in accordance with Use and Care of Experimental Animals guidelines from the Jichi Medical University Guide for Laboratory Animals. Here, we demonstrated miRNA mimic delivery to the kidney resulting in its overexpression using UUO mice. This study was approved by the Ethics Committee of Jichi Medical University [Approval Nos. 19-12 for renal fibrosis, 17-024 for acute kidney infection (AKI), and 19-11 for diabetic nephropathy].
1. Preparation of PEI-NPs-miRNA-mimic complex
NOTE: Here, preparation of PEI-NPs-miRNA-mimic13,14,15 and PEI-NPs-control-miRNA (as a negative control) are described for one mouse.
2. Confirmation of significant delivery of miRNA mimic to the kidney in UUO mice by PEI-NP via tail vein injection using fluorescent microscopy
NOTE: Here, the delivery method of artificially purified miRNA mimic to the kidney is elaborated, indicating the establishment of therapeutic methods for various renal diseases. In brief, UUO mice were administered cyanine3 carboxylic acid (Cy3)-labeled miRNA mimic added to 100 µL of PEI-NPs via the tail vein. The delivery to the kidneys was confirmed with fluorescence microscopy. PEI-NPs-cyanine3 carboxylic acid (Cy3)-labeled miRNA mimic (oligonucleotides) for one mouse is described. This method can significantly deliver miRNA mimic to the kidney in several mouse models, such as UUO mice, diabetic kidney disease mice, and AKI mice produced by IRI. Here, we used a UUO mouse model for the video demonstration. The induction method of UUO was described previously elsewhere13. Follow these protocols within six days after UUO surgery.
3. Confirmation of target miRNA alterations following delivery of miRNA mimic to kidney by PEI-NP via tail vein injection
The target miRNAs for renal fibrosis, diabetic nephropathy, and AKI described below were selected based on the microarray, qRT-PCR, and/or database research for gene therapy applications. For further details, refer to the previous publications13,14,15.
Delivery and effects of miRNA-146a-5p-mimic using PEI-NPs in renal fibrosis mice13
Fluo...
Using the protocol presented in this manuscript, PEI-NPs can deliver miRNA mimics to the kidney to induce overexpression of target miRNAs, resulting in treatment effects in in vivo mouse models of several renal diseases, including renal fibrosis, diabetic kidney disease, and AKI.
The method to prepare the complex of PEI-NPs and miRNA mimic is very simple. The positively charged surface of PEI-NPs entraps the miRNA mimic when they are just mixed13,
The authors declare that they have no conflicts of interest.
This work was partially supported by JSPS KAKENHI (Grant No. 21K08233). We thank Edanz (https://jp.edanz.com/ac) for editing drafts of this manuscript.
Name | Company | Catalog Number | Comments |
4’,6-diamidino-2-phenylindole for staining to nucleus | Thermo Fisher Scientific | D-1306 | |
Buffer RPE | Qiagen | 79216 | Wash buffer 2 |
Buffer RWT | Qiagen | 1067933 | Wash buffer 1 |
Control-miRNA-mimic (artificially synthesized miRNA) | Thermo Fisher Scientific | Not assigned | 5’-UUCUCCGAACGUGUCACGUTT- 3’ (sense) 5’-ACGUGACACGUUCGGAGAATT-3′ (antisense) |
Cy3-labeled double-strand oligonucleotides | Takara Bio Inc. | MIR7900 | |
Fluorescein-labeled Lotus tetragonolobus lectin | Vector Laboratories Inc | FL-1321 | |
In vivo-jetPEI | Polyplus | 101000021 | |
MicroAmp Optical 96-well reaction plate for qRT-PCR | Thermo Fisher Scientific | 4316813 | 96-well reaction plate |
MicroAmp Optical Adhesive Film | Thermo Fisher Scientific | 4311971 | Adhesive film for 96-well reaction plate |
miRNA-146a-5p mimic (artificially synthesized miRNA) | Thermo Fisher Scientific | Not assigned | 5’-UGAGAACUGAAUUCCAUGGGU UT-3′ (sense) 5’-CCCAUGGAAUUCAGUUCUCAUU -3′ (antisense) |
miRNA-146a-5p primer | Qiagen | MS00001638 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
miRNA-181b-5p mimic (artificially synthesized miRNA) | Gene design | Not assigned | 5’-AACAUUCAUUGCUGUCGGUGG GUU-3’ |
miRNA-181b-5p primer | Qiagen | MS00006083 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
miRNA-5100-mimic (artificially synthesized miRNA) | Gene design | Not assigned | 5’-UCGAAUCCCAGCGGUGCCUCU -3′ |
miRNA-5100-primer | Qiagen | MS00042952 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
miRNeasy Mini kit | Qiagen | 217004 | Membrane anchored spin column in a 2.0-mL collection tube |
miScript II RT kit | Qiagen | 218161 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
miScript SYBR Green PCR kit | Qiagen | 218073 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
QIA shredder | Qiagen | 79654 | Biopolymer spin columns in a 2.0-mL collection tube |
QIAzol Lysis Reagent | Qiagen | 79306 | Phenol/guanidine-based lysis reagent |
QuantStudio 12K Flex Flex Real-Time PCR system | Thermo Fisher Scientific | 4472380 | Real-time PCR instrument |
QuantStudio 12K Flex Software version 1.2.1. | Thermo Fisher Scientific | 4472380 | Real-time PCR instrument software |
RNase-free water | Qiagen | 129112 | |
RNU6-2 primer | Qiagen | MS00033740 | Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021) |
Tissue-Tek OCT (Optimal Cutting Temperature Compound) | Sakura Finetek Japan Co.,Ltd. | Not assigned |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone