Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Stimulated Raman scattering (SRS) microscopy is a powerful, nondestructive, and label-free imaging technique. One emerging application is stimulated Raman histology, where two-color SRS imaging at the protein and lipid Raman transitions are used to generate pseudo-hematoxylin and eosin images. Here, we demonstrate a protocol for real-time, two-color SRS imaging for tissue diagnosis.
Stimulated Raman scattering (SRS) microscopy has emerged as a powerful optical imaging technique for tissue diagnosis. In recent years, two-color SRS has been shown to be able to provide hematoxylin and eosin (H&E)-equivalent images that allow fast and reliable diagnosis of brain cancer. Such capability has enabled exciting intraoperative cancer diagnosis applications. Two-color SRS imaging of tissue can be done with either a picosecond or femtosecond laser source. Femtosecond lasers have the advantage of enabling flexible imaging modes, including fast hyperspectral imaging and real-time, two-color SRS imaging. A spectral-focusing approach with chirped laser pulses is typically used with femtosecond lasers to achieve high spectral resolution.
Two-color SRS acquisition can be realized with orthogonal modulation and lock-in detection. The complexity of pulse chirping, modulation, and characterization is a bottleneck for the widespread adoption of this method. This article provides a detailed protocol to demonstrate the implementation and optimization of spectral-focusing SRS and real-time, two-color imaging of mouse brain tissue in the epi-mode. This protocol can be used for a broad range of SRS imaging applications that leverage the high speed and spectroscopic imaging capability of SRS.
Traditional tissue diagnostics rely on staining protocols followed by examination under an optical microscope. One common staining method used by pathologists is H&E staining: hematoxylin stains cell nuclei a purplish blue, and eosin stains the extracellular matrix and cytoplasm pink. This simple staining remains the gold standard in pathology for many tissue diagnoses tasks, particularly cancer diagnosis. However, H&E histopathology, particularly the frozen sectioning technique used in an intraoperative setting, still has limitations. The staining procedure is a laborious process involving tissue embedding, sectioning, fixation, and staining1. The typical turnaround time is 20 min or longer. Performing H&E during frozen sectioning can sometimes become more challenging when multiple sections are processed at once due to the need to evaluate cellular features or growth patterns in 3D for margin assessment. Moreover, intraoperative histological techniques require skilled technicians and clinicians. Limitation in the number of board-certified pathologists in many hospitals is a constraint for intraoperative consultation in many cases. Such limitations may be alleviated with the fast development interests in digital pathology and artificial intelligence-based diagnosis2. However, the H&E staining results are variable, depending on the experience of the technician, which presents additional challenges for computer-based diagnosis2.
These challenges can potentially be addressed with label-free optical imaging techniques. One such technique is SRS microscopy. SRS uses synchronized pulsed lasers—pump and Stokes—to excite molecular vibrations with high efficiency3. Recent reports have demonstrated that SRS imaging of proteins and lipids can generate H&E-equivalent images (also known as stimulated Raman histology or SRH) with intact fresh tissue, which bypasses the need for any tissue processing, significantly shortens the time needed for diagnosis, and has been adapted intraoperatively4. Moreover, SRS imaging can provide 3D images, which offers additional information for diagnosis when 2D images are insufficient5. SRH is unbiased and generates digital images that are readily available for computer-based diagnosis. It quickly emerges as a possible solution for intraoperative cancer diagnosis and tumor margin analysis, especially in brain cancer6,7,8. More recently, SRS imaging of chemical changes of tissue has also been suggested to provide useful diagnostic information that can further help clinicians stratify different cancer types or stages9.
Despite its tremendous potential in tissue diagnosis applications, SRS imaging is mostly limited to academic laboratories specialized in optics due to the complexity associated with the imaging platform, which includes ultrafast lasers, the laser scanning microscope, and sophisticated detection electronics. This protocol provides a detailed workflow to demonstrate the use of a common femtosecond laser source for real-time, two-color SRS imaging and the generation of pseudo-H&E images from mouse brain tissue. The protocol will cover the following procedures:
Alignment and chirp optimization
Most SRS imaging schemes use either picosecond or femtosecond lasers as the excitation source. With femtosecond lasers, the bandwidth of the laser is much larger than the Raman linewidth. To overcome this limitation, a spectral focusing approach is used to chirp the femtosecond lasers to a picosecond timescale to achieve narrow spectral resolution10. Optimal spectral resolution is only achieved when the temporal chirp (also known as the group delay dispersion or just dispersion) is properly matched for the pump and the Stokes lasers. The alignment procedure and the steps needed to optimize the dispersion of the laser beams using highly dispersive glass rods are demonstrated here.
Frequency calibration
An advantage of spectral focusing SRS is that the Raman excitation can be quickly tuned by changing the time delay between the pump and the Stokes lasers. Such tuning affords fast imaging and reliable spectral acquisition compared to tuning laser wavelengths. However, the linear relationship between excitation frequency and time delay requires external calibration. Organic solvents with known Raman peaks are used to calibrate the Raman frequency for spectral focusing SRS.
Real-time, two-color imaging
It is important to increase the imaging speed in tissue diagnosis applications to shorten the time needed for analyzing large tissue specimens. Simultaneous two-color SRS imaging of lipids and proteins obviates the need to tune the laser or time delay, which increases the imaging speed by more than two-fold. This is achieved by using a novel orthogonal modulation technique and dual-channel demodulation with a lock-in amplifier11. This paper describes the protocol for orthogonal modulation and dual-channel image acquisition.
Epi-mode SRS imaging
The majority of SRS imaging shown to date is performed in transmission mode. Epi-mode imaging detects backscattered photons from tissue12. For pathology applications, surgical specimens can be quite large. For transmission mode imaging, tissue sectioning is often necessary, which undesirably requires extra time. In contrast, epi-mode imaging can work with intact surgical specimens. Because the same objective is used to collect backscattered light, there is also no need for aligning a high numerical-aperture condenser required for transmission imaging. Epi-mode is also the only option when tissue sectioning is difficult, such as with bone. Previously we have demonstrated that for brain tissue, epi-mode imaging offers superior imaging quality for tissue thickness > 2 mm13. This protocol uses a polarizing beam splitter (PBS) to collect scattered photons depolarized by tissue. It is possible to collect more photons with an annular detector at the expense of the complexity of customized detector assembly12. The PBS approach is simpler to implement (similar to fluorescence), with the standard photodiode already being used for transmission mode detection.
Pseudo-H&E image generation
Once two-color SRS images are collected, they can be recolored to simulate H&E staining. This paper demonstrates the procedure for converting lipid and protein SRS images to pseudo-H&E SRS images for pathology applications. The experimental protocol details critical steps needed to generate high-quality SRS images. The procedure shown here is not only applicable to tissue diagnosis but also can be adapted for many other hyperspectral SRS imaging applications such as drug imaging and metabolic imaging14,15.
General system requirements
The laser system for this protocol must be able to output 2 synchronized femtosecond laser beams. Systems ideally feature an Optical Parametric Oscillator (OPO) for broad wavelength tuning of one of the laser beams. The setup in this protocol uses a commercial laser system Insight DS+ that outputs two lasers (one fixed beam at 1,040 nm and one OPO-based tunable beam, ranging from 680 to 1,300 nm) with a repetition rate of 80 MHz. Laser scanning microscopes, either from major microscope manufacturers or home-built, can be used for SRS imaging. The utilized microscope is an upright laser scanning microscope built on top of a commercial upright microscope frame. A pair of 5 mm galvo mirrors are used to scan the laser beam. For users choosing to adopt a homebuilt laser scanning microscope, refer to a previously published protocol for the construction of a laser scanning microscope16.
All experimental animal procedures were conducted with 200 µm, fixed, sectioned mouse brains, in accordance with the protocol (# 4395-01) approved by the Institute of Animal Care and Use Committee (IACUC) of the University of Washington. Wild-type mice (C57BL/6J strain) are euthanized with CO2. Then, a craniotomy is performed to extract their brains for fixation in 4% paraformaldehyde in phosphate-buffered saline. The brains are embedded in a 3% agarose and 0.3% gelatin mixture and sectioned into 200 μm-thick slices by a vibratome.
1. Initial alignment
NOTE: Ensure that the beam size and divergence of both arms are matched for best sensitivity and resolution. Collimate the pump and the Stokes beams and adjust their sizes before they enter the laser scanning microscope. To do this, use a pair of achromatic lenses for each beam before combining them on the dichroic mirror. Always wear proper laser goggles for beam alignment.
2. SRS signal detection
3. Spectral resolution optimization
NOTE: The pump and Stokes beams reaching the sample should have the same amount of group delay dispersion (GDD) to maximize spectral resolution. The dispersion depends heavily on the experimental setup. The experimental setup described here utilizes femtosecond pulses at 1,040 nm and 800 nm as Stokes and pump, respectively. Dense flint glass rods (H-ZF52A) are used as the pulse-stretching medium.
4. Signal to noise (SNR) characterization
5. Frequency axis calibration
NOTE: This step is performed to relate the delay stage position to the scanned Raman transition. Careful selection of solvents is required to generate an appropriate "Raman Ruler." DMSO is an effective solvent for CH bonds as it has two sharp Raman peaks at 2,913 cm-1 and 2,994 cm-1.
6. Orthogonal modulation and two-color imaging
NOTE: The orthogonal modulation step is only necessary when real-time two-color imaging is needed. A schematic of this scheme is shown in Figure 5. The orthogonal modulation uses a pair of EOMs driven at a quarter of the laser frequency (20 MHz for 80 MHz laser) with a 90° phase shift between the two. This orthogonal modulation step can be skipped for single-color SRS imaging or hyperspectral SRS imaging.
7. Epi-mode SRS imaging
NOTE: In the transmission mode imaging scheme, the objective focuses the laser into the sample, and then a condenser lens directs the transmitted beam to a photodiode for lock-in detection. In the epi-mode imaging scheme, light that is backscattered and depolarized by the sample is recollected by the focusing objective and isolated using a polarizing beam splitter. The isolated and backscattered photons are sent to a photodiode through a pair of relay lenses for lock-in detection. Figure 6 depicts the epi-mode imaging scheme.
8. False-color staining
Optimizing spectral resolution:
Dispersion through a material is affected by the dispersive medium (length and material) and wavelength. Changing the dispersion rod length affects the spectral resolution and the signal size. It is a give-and-take relationship that can be weighed differently depending on the application. The rods stretch out the beam pulse from being wide in frequency and narrow in time to being narrow in frequency and broad in time. Figure 7 shows the ...
The two-color SRS imaging scheme presented in this protocol hinges on the proper implementation of one-color SRS imaging. In one-color SRS imaging, the critical steps are spatial alignment, temporal alignment, modulation depth, and phase shift. Spatially combining the two beams is accomplished by a dichroic mirror. Several steering mirrors are used for fine adjustment when sending the beams to the dichroic mirror. Once the beams are combined with the dichroic mirror, spatial alignment can be confirmed by picking off the ...
The authors declare that there are no conflicts of interest.
This study was supported by NIH R35 GM133435 to D.F.
Name | Company | Catalog Number | Comments |
100 mm Achromatic Lens | THORLABS | AC254-100-B | Broadband, 650 - 1,050 nm, achromatic lens focal length, 100 mm |
20 MHz bandpass filter | Minicircuits | BBP-21.4+ | Lumped LC Band Pass Filter, 19.2 - 23.6 MHz, 50 Ω |
200 mm Achromatic Lens | THORLABS | AC254-200-B | Broadband, 650 - 1,050 nm, achromatic lens focal length, 200 mm |
Achromatic Half Waveplate | Union Optic | WPA2210-650-1100-M25.4 | Broadband half waveplate |
Achromatic Quarter Waveplate | Union Optic | WPA4210-650-1100-M25.4 | Broadband quarter waveplate |
Beam Sampler | THORLABS | BSN11 | 10:90 Plate Beamsplitter |
Dichroic Mirror | THORLABS | DMSP1000 | Other dichroics with a center wavelength around 1,000 nm can be used. |
DMSO (Dimethyl sulfoxide) | Sigma Aldrich | 472301 | Solvent for calibration of Raman shift. Other solvents with known Raman peaks can be used. |
Electrooptic Amplitude Modulator | THORLABS | EO-AM-NR-C1 | Two EOMs are needed for orthogonal modulation and dual-channel imaging. Resonant version is recommended so lower driving voltage can be used. |
False H&E Staining Script | Matlab | https://github.com/TheFuGroup/HE_Staining | |
Fanout Buffer | PRL-414B | Pulse Research Lab | 1:4 TTL/CMOS Fanout Buffer and Line Driver, for generating the EOM driving frequency and the reference to the lock-in |
Fast Photodiode | THORLABS | DET10A2 | Si Detector, 1 ns Rise Time |
Frequency Divider | PRL-220A | Pulse Research Lab | TTL Freq. Divider (f/2, f/4, f/8, f/16), for generating 20MHz from the laser output. |
Highly Dispersive Glass Rods | Union Optic | CYLROD01 | High dispersion H-ZF52A Rod lens 120 mm, SF11 Rod lens 100 mm |
Insight DS+ | Newport | Laser system capable of outputting two synchronzied pulsed lasers (one fixed beam at 1, 040 nm and one tunable beam, ranging from 680-1,300 nm) with a repetition rate of 80 MHz. | |
Lock-in Amplifier | Liquid Instruments | Moku Lab | Lock-in amplifier to extract SRS signal from the photodiode. A Zurich Instrument HF2LI or similar instrument can be used as well. |
Mirrors | THORLABS | BB05-E03-10 | Broadband Dielectric Mirror, 750 - 1,100 nm. Silver mirrors can also be used. |
Motorized Delay Stage | Zaber | X-DMQ12P-DE52 | Delay stage for fine control of the temporal overlap of the pump and the Stokes lasers. Any other motorized stage should work. |
Oil Immersion Condensor | Nikon | CSC1003 | 1.4 NA. Other condensers with NA>1.2 can be used. |
Oscilloscope | Tektronix | TDS7054 | Any other oscilloscope with 400 MHz bandwdith or higher should work. |
Phase Shifter | SigaTek | SF50A2 | For shifting the phase of the modulation frequency |
Photodiode | Hamamatsu Corp | S3994-01 | Silicon PIN diode with large area (10 x 10 cm2). Other diodes with large area and low capacitance can be used. |
Polarizing Beam Splitter | Union Optic | PBS9025-620-1000 | Broadband polarizing beamsplitter |
Refactive Index Database | refractiveindex.info | ||
Retro-reflector | Edmund Optics | 34-408 | BBAR Right Angle Prism. Other prisms or retroreflector can be used. |
RF Power Amplifier | Minicircuits | ZHL-1-2W+ | Gain Block, 5 - 500 MHz, 50 Ω |
Scan Mirrors | Cambridge Technologies | 6215H | We used a 5mm mirror set with silver coating |
ScanImage | Vidrio | ScanImage Basic | Laser scanning microscope control software |
Shortpass Filter | THORLABS | FESH1000 | 25.0 mm Premium Shortpass Filter, Cut-Off Wavelength: 1,000 nm. For efficient suppression of the Stokes, two filters may be necessary. |
Upright Microscope | Nikon | Eclipse FN1 | Any other microscope frame can be used. If a laser scanning microscope is available, it can be used directly. Otherwise, a galvo scanner and scan lens needed to be added to the microscope. |
Water Immersion Objective | Olympus | XLPLN25XWMP2 | The multiphoton 25X Objective has a NA of 1.05. Other similar objectives can be used. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone