Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Ocular surface inflammation harms the ocular surface tissues and compromises vital functions of the eye. The present protocol describes a method to induce ocular inflammation and collect compromised tissues in a mouse model of Meibomian gland dysfunction (MGD).

Streszczenie

Ocular surface diseases include a range of disorders that disturb the functions and structures of the cornea, conjunctiva, and the associated ocular surface gland network. Meibomian glands (MG) secrete lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film. Neutrophils and extracellular DNA traps populate MG and the ocular surface in a mouse model of allergic eye disease. Aggregated neutrophil extracellular traps (aggNETs) formulate a mesh-like matrix composed of extracellular chromatin that occludes MG outlets and conditions MG dysfunction. Here, a method for inducing ocular surface inflammation and MG dysfunction is presented. The procedures for collecting organs related to the ocular surface, such as the cornea, conjunctiva, and eyelids, are described in detail. Using established techniques for processing each organ, the major morphological and histopathological features of MG dysfunction are also shown. Ocular exudates offer the opportunity to assess the inflammatory state of the ocular surface. These procedures enable the investigation of topical and systemic anti-inflammatory interventions at the preclinical level.

Wprowadzenie

Every blink of an eye replenishes the smooth tear film dispersed over the cornea. The ocular surface epithelia facilitate the distribution and correct orientation of the tear film on the ocular surface. Mucins are provided by the cornea and conjunctiva epithelial cells to help position the aqueous part of the tear film coming from the lacrimal glands on the eyes' surface. Finally, MG secretes lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film1,2,3. In this fashion, the coordinated functions of all the ocular organs protect the ocular surface from invading pathogens or injury and support crystal clear vision without any pain or discomfort.

In a healthy ocular surface, the ocular flowing discharge or eye rheum sweeps away dust, dead epithelial cells, bacteria, mucus, and immune cells. Aggregated neutrophil extracellular traps (aggNETs) formulate a mesh-like matrix composed of extracellular chromatin and incorporate these components in the eye rheum. AggNETs resolve inflammation by the proteolytic degradation of pro-inflammatory cytokines and chemokines4. However, when they become dysfunctional, these aberrant aggNETs drive the pathogenesis of diseases such as vascular occlusions in COVID-195, gallstones6, and sialolithiasis7. Similarly, aggNETs on the ocular surface play a protective role and contribute to resolving inflammation of the highly exposed surface8. Either an exaggerated formation or lack of aggNETs in the ocular surface can impair the tear film stability and/or cause corneal wounds, cicatrizing conjunctivitis, and dry eye disease. For example, the obstruction of MG is a leading cause of dry eye disease9. AggNETs are also known to plug the flow of lipid secretion from the ducts of MG and cause Meibomian gland dysfunction (MGD). The congestion of MG orifices by aggNETs causes a lack of fatty fluid enveloping the ocular surface and retrograde bottled-up fluid, resulting in dysfunction of the gland function and acinar damage. This dysfunction can result in tear film evaporation, fibrosis of the margins on the eyelids, eye inflammation, and detrimental damage to the MG10,11.

Several animal models have been developed over the years to imitate the pathological process of MGD in humans. For example, C57BL/6 mice aged 1 year have helped study age-related effects on dry eye disease (DED) and MGD, reflecting the ocular disease pathology in patients aged 50 years and older12,13,14. Furthermore, rabbits are appropriate models for investigating the effects of pharmacological interventions. Therefore, inducing MGD in rabbits has been reported by either the topical administration of epinephrine or the systemic introduction of 13-cis-retinoic acid (isotretinoin)15,16,17,18,19.

Although these animal models were adequate for determining the different factors contributing to the pathophysiology of MGD, they were restricted in their utilization. For instance, the murine model of age-related MGD was ideal for deciphering elements in older adults only, and hence, rabbits appeared to be the most suitable animal model to study ocular surface diseases, as they enable the investigation of multiple pathophysiological mechanisms. However, due to the lack of comprehensive analytical tools to detect proteins at the ocular surface and because many parts of the rabbit genome are unannotated, they are limited for investigations20,21.

In addition, these animal models used to investigate the pathogenesis of dry eye disease did not provide adequate details to analyze the immunological arm of the disorder that instigates the inflammation of the ocular surface. Accordingly, the murine model of MGD developed by Reyes et al. showed an association between allergic eye disease in mice and MGD in humans and highlighted the immune etiology responsible for obstructive MGD21. This model associates allergic eye disease with a TH17 response that recruits neutrophils to the conjunctiva and eyelid, causing MGD and chronic ocular inflammation21. The induction of MGD and ocular inflammation in this murine model is a valuable tool for investigating upstream events during the development of local inflammation driven by an ongoing immune response21. The current protocol describes the ocular surface inflammation accompanied by obstructive MGD. In this method, mice are immunized and, after 2 weeks, challenged on the ocular surface with the immunogen for 7 days. Furthermore, the steps to isolate ocular exudate and the associated ocular organs during acute inflammation and the dissection of the cornea, conjunctiva, and eyelids are described.

Protokół

All procedures involving animals were conducted according to the institutional guidelines on animal welfare and approved by the animal welfare commission of the Friedrich-Alexander-University Erlangen-Nuremberg (FAU) (permit number: 55.2.2-2532-2-1217). Female C57Bl/6 mice, aged 7-9 weeks were used for the present study. The mice were obtained from commercial sources (see Table of Materials) and kept in specific pathogen-free conditions with 12 h day/night cycles.

1. Induction of murine ocular surface inflammation

  1. Perform immunogen preparation for immunization.
    1. Prepare the immunogen freshly on the day of immunization, mixing ovalbumin (OVA, 50 mg/mL) and pertussis toxin (100 µg/mL) in saline and the adjuvant aluminum hydroxide (40 mg/mL) (see Table of Materials) in a 1:1 proportion.
      CAUTION: Perform the opening, reconstitution, and immunogen preparation of pertussis toxin in a laminar safety cabinet. Wear protective clothing and avoid any contact with the skin.
    2. Incubate the immunogen and adjuvant mixture at room temperature for 30 min and load 100 µL into a 1 mL syringe.
    3. Perform intraperitoneal injection of the immunogen solution in a non-anesthetized mouse.
      1. Hold the mouse softly by the tail while grasping the cage grid. Hold firmly the skin of the back and the neck region between the thumb and index finger and fix the tail and lower limbs between the ring and little finger against the palm of the hand.
      2. Keep the fixed mouse with its head downward.
      3. Inject 100 µL of the prepared immunogen solution in the right or left quadrant of the lower abdominal cavity.
  2. Perform ocular surface challenge 2 weeks after immunization.
    1. Anesthetize the mouse with isoflurane (2.5%).
    2. Apply 5 µL of OVA (50 mg/mL) or saline (0.9 % NaCl) per eye on both eyes and wait until the drop gets absorbed by the eye. This takes ~5 min.
    3. Repeat the procedure 1x daily for 7 days.
      ​NOTE: The topical administration of medications can be done in the same way.

2. Collection of ocular exudates

  1. Recover the ocular exudates formed during the challenge phase by applying 50 µL of sterile saline to the eye immediately after the challenge.
  2. To obtain a single-cell suspension, treat the collected ocular discharge with recombinant MNase (2 x 106 gel U/mL, see Table of Materials) containing the cofactor calcium (5 mM) at 37 °C for 20 min.
  3. Centrifuge at 400 x g for 7 min at room temperature.
  4. Isolate the supernatant and measure the cytokines and chemokines using multiplexed ELISA according to the manufacturer's instructions (see Table of Materials).
    ​NOTE: The obtained supernatant can be used for protein analysis and the pellet for functional assays such as immunophenotyping, phagocytosis, degranulation, and gene expression.

3. Excision of ocular surface tissues

  1. Dissect the eyelids and eye globe following the steps below.
    1. Euthanize the mouse by CO2 asphyxiation and cervical dislocation.
    2. Place the mouse on an even surface.
    3. Disinfect the orbital area around the eye with a swab impregnated with 70% ethanol.
    4. Make an incision between the ear and the retro-orbital sinus and along the surface above the squamous bone vertically, extending the incision horizontally below the lower eyelid along the maxillary bone and above the upper eyelid along the frontal bone. This forms an incision around the eye (Figure 1).
    5. Carefully hold the dissected tissue around the eye using curved forceps and pull the tissue and eyeball out.
    6. Place the excised organs in sterile PBS.
    7. Trim excess facial muscle tissue around the excised upper eyelids using a scalpel and under the stereomicroscope.
  2. Collect the conjunctiva following the steps below.
    1. Place the upper eyelid on a dry Petri dish under the stereomicroscope.
    2. Using fine tweezers and a scalpel, peel the whitish-mucous layer very gently out of the inner surface of the eyelid.
  3. Next, dissect the cornea following the steps below.
    1. Place the eye globe on a new dry Petri dish on top of dry ice for 3 min.
    2. Take the Petri dish onto the bench surface in a stable position.
    3. Make a small incision at the border of the cornea next to the limbus using fine sharp scissors.
    4. Prolong the incision with the scalpel around the eye globe, separating the sclera from the cornea.
    5. Remove remnants of the iris and the lens from the backside of the cornea by generously flushing with saline solution.

4. Documentation of Meibomian gland (MG) obstruction

  1. To assess the MG and its orifices, place excised eyelids in an upright position under the stereomicroscope (Figure 2).
  2. Capture images with white light epi-illumination according to the camera's exposure time and ISO settings.
    NOTE: Morphometric analysis of these images provides reliable quantification of the plug size at the outlet of the glands. The quantification can be performed by outlining with the wand tool the eye plugs and executing the "Analyze Particles" command of the Image J software (see Table of Materials).

5. Transillumination of eyelids (Meibomian gland morphology)

  1. To assess the MG area, place the excised eyelids in a horizontal position and turn on the backlight of the stereomicroscope equipped with an infrared camera (Figure 3).
  2. Capture images by adjusting the exposure time according to the camera's (see Table of Materials) ISO.
    NOTE: Infrared imaging of these transilluminated eyelids under the stereomicroscope can help measure the shape and size of each acini. Morphometric analysis of these images provides reliable quantification of the size and number of MG. The quantification can be performed by outlining the MG with the wand tool and executing the "Analyze Particles" command of the Image J software.

Wyniki

The present protocol describes the sequential steps for establishing a murine model of ocular surface inflammation. The protocols aim to show how to apply therapeutics locally, obtain ocular exudates, and excise associated accessory organs such as healthy and inflamed eyelids (Figure 2), the cornea, and the conjunctiva. Attention must be paid when the upper eyelids are dissected for the isolation of the conjunctiva, and it must be stored in 1x PBS during the dissection of the cornea. This wi...

Dyskusje

The oily secretion of the Meibomian glands is of great importance for a healthy eye22. However, the obstruction of these sebaceous glands by aggregated neutrophil extracellular traps (aggNETs) that line up as parallel strands located on the tarsal plates of both eyelids can disrupt the tear film23. This disruption results in Meibomian gland dysfunction (MGD)1 and accelerated tear evaporation and conditions the damage of the ocular surface

Ujawnienia

The authors have no conflicts of interest to disclose.

Podziękowania

This work was partially supported by the German Research Foundation (DFG) 2886 PANDORA Project-No.B3; SCHA 2040/1-1; MU 4240/2-1; CRC1181(C03); TRR241(B04), H2020-FETOPEN-2018-2020 Project 861878, and by the Volkswagen-Stiftung (Grant 97744) to MH.

Materiały

NameCompanyCatalog NumberComments
1x PBSGibco
Aluminium HydroxideImject alum Adjuvant7716140 mg/ mL
Final Concentration: in vivo: 1 mg/ 100 µL
C57Bl/6 mice, aged 7–9 weeksCharles River Laboratories 
CalciumCarl rothCN93.11 M
Final Concentration: 5 mM
Curved forcepsFST by Dumont SWITZERLAND5/45 11251-35
Fine sharp scissorFST Stainless steel, Germany15001-08
Laminar safety cabinetHerasafe
Macrophotography CameraCanonEOS6D
Macrophotography Camera (without IR filter)NikonD5300
MnaseNew England biolabsM0247S2 x 106 gel U/mL
Multi-analyte flow assay kit (Custom mouse 13-plex panel)BiolegendCLPX-200421AM-UERLAN
NaCl 0,9% (Saline)B.Braun
Ovalbumin (OVA)Endofit, Invivogen9006-59-110 mg/200 µL in saline
Pertussis toxin ThermoFisher Scientific PHZ117450 µg/ 500 µL in saline
Final Concentration: in vivo: 100 µg/ 100 µL
PetridishGreiner bio-one628160
ScalpelFeather disposable scalpelNo. 21 Final Concentration: in vivo:  300 ng/ 100 µL
StereomicroscopeZaissStemi508
Syringe (corneal/iris washing)BD Microlane27 G x 3/4 - Nr.20 0,4 x 19 mm
Syringe (i.p immunization)BD Microlane24 G1"-Nr 17, 055* 25 mm

Odniesienia

  1. Gilbard, J. P., Rossi, S. R., Heyda, K. G. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology. 96 (8), 1180-1186 (1989).
  2. Mishima, S., Maurice, D. M. The oily layer of the tear film and evaporation from the corneal surface. Experimental Eye Research. 1, 39-45 (1961).
  3. Gipson, I. K. The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Investigative Ophthalmology and Visual Science. 48 (10), 4391-4398 (2007).
  4. Hahn, J., et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. The FASEB Journal. 33 (1), 1401-1414 (2019).
  5. Leppkes, M., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 58, 102925 (2020).
  6. Munoz, L. E., et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 51 (3), 443-450 (2019).
  7. Schapher, M., et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 9 (9), 2139 (2020).
  8. Mahajan, A., et al. Frontline science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. Journal of Leukocyte Biology. 105 (6), 1087-1098 (2019).
  9. DEWS Definition and Classification Subcommittee. The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. The Ocular Surface. 5 (2), 75-92 (2007).
  10. Nichols, K. K., et al. The international workshop on meibomian gland dysfunction: Executive summary. Investigative Ophthalmology and Visual Science. 52 (4), 1922-1929 (2011).
  11. Mahajan, A., et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. The Ocular Surface. 20, 1-12 (2021).
  12. Jester, B. E., Nien, C. J., Winkler, M., Brown, D. J., Jester, J. V. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. The Anatomical Record. 294 (2), 185-192 (2011).
  13. Nien, C. J., et al. Age-related changes in the meibomian gland. Experimental Eye Research. 89 (6), 1021-1027 (2009).
  14. Parfitt, G. J., Xie, Y., Geyfman, M., Brown, D. J., Jester, J. V. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging. 5 (11), 825-834 (2013).
  15. Lambert, R. W., Smith, R. E. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Investigative Ophthalmology and Visual Science. 29 (10), 1559-1564 (1988).
  16. Jester, J. V., Nicolaides, N., Kiss-Palvolgyi, I., Smith, R. E. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Investigative Ophthalmology and Visual Science. 30 (5), 936-945 (1989).
  17. Jester, J. V., et al. In vivo biomicroscopy and photography of meibomian glands in a rabbit model of meibomian gland dysfunction. Investigative Ophthalmology and Visual Science. 22 (5), 660-667 (1982).
  18. Lambert, R., Smith, R. E. Hyperkeratinization in a rabbit model of meibomian gland dysfunction. American Journal of Ophthalmology. 105 (6), 703-705 (1988).
  19. Knop, E., Knop, N., Millar, T., Obata, H., Sullivan, D. A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investigative Ophthalmology and Visual Science. 52 (4), 1938-1978 (2011).
  20. Huang, W., Tourmouzis, K., Perry, H., Honkanen, R. A., Rigas, B. Animal models of dry eye disease: Useful, varied and evolving (Review). Experimental and Therapeutic Medicine. 22 (6), 1394 (2021).
  21. Reyes, N. J., et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Science Translational Medicine. 10 (451), (2018).
  22. Knop, E., Korb, D. R., Blackie, C. A., Knop, N. The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease. Developments in Ophthalmology. 45, 108-122 (2010).
  23. Knop, N., Knop, E. Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands. Ophthalmologe. 106 (10), 872-883 (2009).
  24. Nien, C. J., et al. Effects of age and dysfunction on human meibomian glands. Archives of Ophthalmology. 129 (4), 462-469 (2011).
  25. Lio, C. T., Dhanda, S. K., Bose, T. Cluster analysis of dry eye disease models based on immune cell parameters - New insight into therapeutic perspective. Frontiers in Immunology. 11, 1930 (2020).
  26. Nguyen, D. D., Luo, L. J., Lai, J. Y. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Materials Today Bio. 13, 100183 (2022).
  27. Lin, P. H., et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia. 141, 140-150 (2022).
  28. Yu, D., et al. Loss of beta epithelial sodium channel function in meibomian glands produces pseudohypoaldosteronism 1-like ocular disease in mice. American Journal of Pathology. 188 (1), 95-110 (2018).
  29. Mauris, J., et al. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland. Cell Death & Disease. 6 (4), 1726 (2015).
  30. Ibrahim, O. M., et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PloS One. 9 (7), 99328 (2014).
  31. McMahon, A., Lu, H., Butovich, I. A. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Investigative Ophthalmology and Visual Science. 55 (5), 2832-2840 (2014).
  32. Miyake, H., Oda, T., Katsuta, O., Seno, M., Nakamura, M. Meibomian gland dysfunction model in hairless mice fed a special diet with limited lipid content. Investigative Ophthalmology and Visual Science. 57 (7), 3268-3275 (2016).
  33. Schaumberg, D. A., et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Investigative Ophthalmology and Visual Science. 52 (4), 1994-2005 (2011).
  34. Lee, S. Y., et al. Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. American Journal of Ophthalmology. 156 (2), 247-253 (2013).
  35. Nakae, S., et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 17 (3), 375-387 (2002).
  36. von Vietinghoff, S., Ley, K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. Journal of Immunology. 183 (2), 865-873 (2009).
  37. Langrish, C. L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 201 (2), 233-240 (2005).
  38. Chen, Y., et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. Journal of Clinical Investigation. 116 (5), 1317-1326 (2006).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Ocular Surface InflammationMeibomian Gland DysfunctionNeutrophil Extracellular TrapsOcular ExudatesImmunogen SolutionIntraperitoneal InjectionOcular Surface ChallengeOvalbuminSalineTissue ExcisionC57 Black Six MousePre clinical InterventionsConjunctiva DissectionSurgical Techniques

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone