A subscription to JoVE is required to view this content. Sign in or start your free trial.
Ocular surface inflammation harms the ocular surface tissues and compromises vital functions of the eye. The present protocol describes a method to induce ocular inflammation and collect compromised tissues in a mouse model of Meibomian gland dysfunction (MGD).
Ocular surface diseases include a range of disorders that disturb the functions and structures of the cornea, conjunctiva, and the associated ocular surface gland network. Meibomian glands (MG) secrete lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film. Neutrophils and extracellular DNA traps populate MG and the ocular surface in a mouse model of allergic eye disease. Aggregated neutrophil extracellular traps (aggNETs) formulate a mesh-like matrix composed of extracellular chromatin that occludes MG outlets and conditions MG dysfunction. Here, a method for inducing ocular surface inflammation and MG dysfunction is presented. The procedures for collecting organs related to the ocular surface, such as the cornea, conjunctiva, and eyelids, are described in detail. Using established techniques for processing each organ, the major morphological and histopathological features of MG dysfunction are also shown. Ocular exudates offer the opportunity to assess the inflammatory state of the ocular surface. These procedures enable the investigation of topical and systemic anti-inflammatory interventions at the preclinical level.
Every blink of an eye replenishes the smooth tear film dispersed over the cornea. The ocular surface epithelia facilitate the distribution and correct orientation of the tear film on the ocular surface. Mucins are provided by the cornea and conjunctiva epithelial cells to help position the aqueous part of the tear film coming from the lacrimal glands on the eyes' surface. Finally, MG secretes lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film1,2,3. In this fashion, the coordinated functions of all the ocular organs prote....
All procedures involving animals were conducted according to the institutional guidelines on animal welfare and approved by the animal welfare commission of the Friedrich-Alexander-University Erlangen-Nuremberg (FAU) (permit number: 55.2.2-2532-2-1217). Female C57Bl/6 mice, aged 7-9 weeks were used for the present study. The mice were obtained from commercial sources (see Table of Materials) and kept in specific pathogen-free conditions with 12 h day/night cycles.
1. Ind.......
The present protocol describes the sequential steps for establishing a murine model of ocular surface inflammation. The protocols aim to show how to apply therapeutics locally, obtain ocular exudates, and excise associated accessory organs such as healthy and inflamed eyelids (Figure 2), the cornea, and the conjunctiva. Attention must be paid when the upper eyelids are dissected for the isolation of the conjunctiva, and it must be stored in 1x PBS during the dissection of the cornea. This wi.......
The oily secretion of the Meibomian glands is of great importance for a healthy eye22. However, the obstruction of these sebaceous glands by aggregated neutrophil extracellular traps (aggNETs) that line up as parallel strands located on the tarsal plates of both eyelids can disrupt the tear film23. This disruption results in Meibomian gland dysfunction (MGD)1 and accelerated tear evaporation and conditions the damage of the ocular surface
This work was partially supported by the German Research Foundation (DFG) 2886 PANDORA Project-No.B3; SCHA 2040/1-1; MU 4240/2-1; CRC1181(C03); TRR241(B04), H2020-FETOPEN-2018-2020 Project 861878, and by the Volkswagen-Stiftung (Grant 97744) to MH.
....Name | Company | Catalog Number | Comments |
1x PBS | Gibco | ||
Aluminium Hydroxide | Imject alum Adjuvant | 77161 | 40 mg/ mL Final Concentration: in vivo: 1 mg/ 100 µL |
C57Bl/6 mice, aged 7–9 weeks | Charles River Laboratories | ||
Calcium | Carl roth | CN93.1 | 1 M Final Concentration: 5 mM |
Curved forceps | FST by Dumont SWITZERLAND | 5/45 11251-35 | |
Fine sharp scissor | FST Stainless steel, Germany | 15001-08 | |
Laminar safety cabinet | Herasafe | ||
Macrophotography Camera | Canon | EOS6D | |
Macrophotography Camera (without IR filter) | Nikon | D5300 | |
Mnase | New England biolabs | M0247S | 2 x 106 gel U/mL |
Multi-analyte flow assay kit (Custom mouse 13-plex panel) | Biolegend | CLPX-200421AM-UERLAN | |
NaCl 0,9% (Saline) | B.Braun | ||
Ovalbumin (OVA) | Endofit, Invivogen | 9006-59-1 | 10 mg/200 µL in saline |
Pertussis toxin | ThermoFisher Scientific | PHZ1174 | 50 µg/ 500 µL in saline Final Concentration: in vivo: 100 µg/ 100 µL |
Petridish | Greiner bio-one | 628160 | |
Scalpel | Feather disposable scalpel | No. 21 | Final Concentration: in vivo: 300 ng/ 100 µL |
Stereomicroscope | Zaiss | Stemi508 | |
Syringe (corneal/iris washing) | BD Microlane | 27 G x 3/4 - Nr.20 0,4 x 19 mm | |
Syringe (i.p immunization) | BD Microlane | 24 G1"-Nr 17, 055* 25 mm |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved