Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
A mouse surgical model to create left lung ischemia reperfusion (IR) injury while maintaining ventilation and avoiding hypoxia.
Ischemia reperfusion (IR) injury frequently results from processes that involve a transient period of interrupted blood flow. In the lung, isolated IR permits the experimental study of this specific process with continued alveolar ventilation, thereby avoiding the compounding injurious processes of hypoxia and atelectasis. In the clinical context, lung ischemia reperfusion injury (also known as lung IRI or LIRI) is caused by numerous processes, including but not limited to pulmonary embolism, resuscitated hemorrhagic trauma, and lung transplantation. There are currently limited effective treatment options for LIRI. Here, we present a reversible surgical model of lung IR involving first orotracheal intubation followed by unilateral left lung ischemia and reperfusion with preserved alveolar ventilation or gas exchange. Mice undergo a left thoracotomy, through which the left pulmonary artery is exposed, visualized, isolated, and compressed using a reversible slipknot. The surgical incision is then closed during the ischemic period, and the animal is awakened and extubated. With the mouse spontaneously breathing, reperfusion is established by releasing the slipknot around the pulmonary artery. This clinically relevant survival model permits the evaluation of lung IR injury, the resolution phase, downstream effects on lung function, as well as two-hit models involving experimental pneumonia. While technically challenging, this model can be mastered over the course of a few weeks to months with an eventual survival or success rate of 80%-90%.
Ischemia reperfusion (IR) injury can occur when blood flow is restored to an organ or tissue bed after some period of interruption. In the lung, IR can occur in isolation or in association with other injurious processes such as infection, hypoxia, atelectasis, volutrauma (from high tidal volumes during mechanical ventilation), barotrauma (high peak or sustained pressures during mechanical ventilation), or blunt (non-penetrating) lung contusion injury1,2,3. There remain several gaps in our knowledge about the mechanisms of LIRI and the impact of concurrent processes (e.g., infection) on LIRI outcomes, and also the treatment options for LIRI are limited. An in vivo model of pure LIRI is required to identify the pathophysiology of lung IR injury in isolation and to study its contribution to any multi-hit process of which lung injury is a component.
Murine lung IR models can be used to study the lung-specific pathophysiology of multiple processes, including lung transplantation3, pulmonary embolism4, and lung injury following hemorrhagic trauma with resuscitation5. Currently used models include surgical lung transplantation6, hilar clamping7, ex vivo lung perfusion8, and ventilated lung IR9. Here, we provide a detailed protocol for a murine ventilated lung IR model of sterile lung injury. There are multiple benefits of this approach (Figure 2), including that it induces minimal hypoxia and minimal atelectasis, and it is a survival surgery model that allows for long-term studies.
Reasons to choose this model of LIRI over other models such as the hilar clamping and ex vivo perfusion models are the following: this model minimizes the inflammatory contributions of atelectasis, mechanical ventilation, and hypoxia; it preserves cyclical ventilation; it maintains an intact in vivo circulatory immune system that can respond to the IR injury; and finally, as a survival procedure, it permits the longer-term analysis of the mechanisms of secondary injury generation (2-hit models) and injury resolution. Overall, we believe this ventilated lung IR model provides the "purest" form of IR injury that can be studied experimentally.
Other publications have described the use of orotracheal intubation of mice to perform IT injections or installations10,11, but not as the starting point for a survival surgery as it is in this model. The placement of an orotracheal tube permits the performance of lung surgery by allowing the collapse of the operative lung. It also allows for the reinflation of the lung at the end of the procedure, which is critical for the pneumothorax and for the ability of the mouse to return to spontaneous ventilation at the conclusion of the procedures. Finally, the removal of the secured orotracheal tube is a simple procedure that, unlike an invasive tracheotomy, is compatible with a survival surgery. This allows for longer term research studies focused on understanding the progression and resolution of LIRI and associated disorders, as well as the creation of chronic injury models.
All procedures and steps described below were approved by the institutional animal care and use committee (IACUC) at the University of California San Francisco. Any mouse strain can be used, though some strains have a more robust lung IR inflammatory response compared to others12. Mice that are approximately 12-15 weeks of age (30-40 g) or older tolerate and survive the lung IR surgery better than younger mice. Both male and female mice can be used for these surgeries.
1. Mouse Intubation Protocol
2. Lung ischemia and reperfusion (IR) surgery protocol
Inflammation generated by unilateral ventilated sterile lung ischemia reperfusion (IR) injury: Following 1 h of ischemia, we observed increased levels of cytokines in the serum and within the lung tissue by both ELISA and qRT-PCR that peaked at 1 h following reperfusion and rapidly returned to baseline within 12-24 h after reperfusion13. For samples collected at 3 h following reperfusion, we observed intense neutrophil infiltration within the left lung tissue and noted that the intensity of the in...
This manuscript details the steps involved in performing the ventilated lung IR model developed by Dodd-o et al.9. This model has helped identify molecular pathways involved in the generation and resolution of inflammation from lung IR in isolation14,15,16,17, lung IR in combination with co-existing infection18, and lung IR in relation to the gut-...
The authors declare that they have no competing financial interests.
This work was funded by departmental support from the Department of Anesthesia and Perioperative Care, University of California San Francisco and San Francisco General Hospital, as well as by an NIH R01 award (to AP): 1R01HL146753.
Name | Company | Catalog Number | Comments |
Equipment | |||
Fiber Optic Light Pipe | Cole-Parmer | UX-41720-65 | Fiberoptic light pipe |
Fiber Optic Light Source | AmScope | SKU: CL-HL250-B | Light source for fiberoptic lights |
Germinator 500 | Cell Point Scientific, Inc. | No.5-1450 | Bead Sterilizer |
Heating Pad | AIMS | 14-370-223 | Alternative option |
Lithium.Ion Grooming Kits(hair clipper) | WAHL home products | SKU 09854-600B | To remove mouse hair on surgical site |
Microscope | Nikon | SMZ-10 | Other newer options available at the company website |
MiniVent Ventilator | Havard Apparatus | Model 845 | Mouse ventilator |
Ultrasonic Cleaner | Cole-Parmer | UX-08895-05 | Clean tools that been used in operation |
Warming Pad | Kent Scientific | RT-0501 | To keep mouse warm while recovering from surgery |
Weighing Scale | Cole-Parmer | UX-11003-41 | Weighing scale |
Surgery Tools | |||
4-0 Silk Suture | Ethicon | 683G | For closing muscle layer |
7-0 Prolene Suture | Ethicon Industry | EP8734H | Using for making a slip knot of left pulmonary artery |
Bard-Parker (11) Scalpel (Rib-Back Carbon Steel Surgical Blade, sterile, single use) | Aspen Surgical | 372611 | For entering thoracic cavity (option 1) |
Bard-Parker (12) Scalpel | Aspen Surgical | 372612 | For entering thoracic cavity (option 2) |
Extra Fine Graefe Forceps | FST | 11150-10 | Muscle/rib holding forceps |
Magnetic Fixator Retraction System | FST | 1. Base Plate (Nos. 18200-03) 2. Fixators (Nos. 18200-01) 3. Retractors (Nos. 18200-05 through 18200-12) 4. Elastomer (Nos.18200-07) 5. Retractor(No.18200-08) | Small Animal Retraction System |
Monoject Standard Hypodermic Needle | COVIDIEN | 05-561-20 | For medication delivery IP |
Narrow Pattern Forceps | FST | 11002-12 | Skin level forceps |
Needle holder/Needle driver | FST | 12565-14 | for holding needles |
Needles | BD | 305110 | 26 gauge needle for externalizing slipknot (24 or 26 gauge needle okay too) |
PA/Vessel Dilating forceps | FST | 00125-11 | To hold PA; non-damaging gripper |
Scissors | FST | 14060-09 | Used for incision and cutting into the muscular layer durging surgery |
Ultra Fine Dumont micro forceps | FST | 11295-10 (Dumont #5 forceps, Biology tip, tip dimension:0.05*0.02mm,11cm) | For passing through the space between the left pulmonary artery and bronchus |
Reagents | |||
0.25% Bupivacaine | Hospira, Inc. | 0409-1159-02 | Topical analgesic used during surgical wound closure |
Avertin (2,2,2-Tribromoethanol) | Sigma-Aldrich | T48402-25G | Anesthetic, using for anesthetize the mouse for IR surgery, the concentration used in IR surgery is 250-400 mg/kg. |
Buprenorphine | Covetrus North America | 59122 | Analgesic: concentration used for surgery is 0.05-0.1 mg/kg |
Eye Lubricant | BAUSCH+LOMB | Soothe Lubricant Eye Ointment | Relieves dryness of the eye |
Povidone-Iodine 10% Solution | MEDLINE INDUSTRIES INC | SKU MDS093944H (2 FL OZ, topical antiseptic) | Topical liquid applied for an effective first aid antiseptic at beginning of surgery |
Materials | |||
Alcohol Swab | BD brand | BD 326895 | for sterilzing area of injection and surgery |
Plastic film | KIRKLAND | Stretch-Tite premium | Alternative for covering the sterilized surgical field (more cost effective) |
Rodent Surgical Drapes | Stoelting | 50981 | Sterile field or drape for surgical field |
Sterile Cotton Tipped Application | Pwi-Wnaps | 703033 | used for applying eye lubricant |
Top Sponges | Dukal Corporaton | Reorder # 5360 | Stopping bleeding from skin/muscle |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone