Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here, we describe a high-speed magnetic tweezer setup that performs nanomechanical measurements on force-sensitive biomolecules at the maximum rate of 1.2 kHz. We introduce its application to DNA hairpins and SNARE complexes as model systems, but it will be also applicable to other molecules involved in mechanobiological events.

Streszczenie

Single-molecule magnetic tweezers (MTs) have served as powerful tools to forcefully interrogate biomolecules, such as nucleic acids and proteins, and are therefore poised to be useful in the field of mechanobiology. Since the method commonly relies on image-based tracking of magnetic beads, the speed limit in recording and analyzing images, as well as the thermal fluctuations of the beads, has long hampered its application in observing small and fast structural changes in target molecules. This article describes detailed methods for the construction and operation of a high-resolution MT setup that can resolve nanoscale, millisecond dynamics of biomolecules and their complexes. As application examples, experiments with DNA hairpins and SNARE complexes (membrane-fusion machinery) are demonstrated, focusing on how their transient states and transitions can be detected in the presence of piconewton-scale forces. We expect that high-speed MTs will continue to enable high-precision nanomechanical measurements on molecules that sense, transmit, and generate forces in cells, and thereby deepen our molecular-level understanding of mechanobiology.

Wprowadzenie

Cells actively sense and respond to mechanical stimuli. In doing so, many biomolecules display force-dependent properties that enable dynamic structural changes. Well-appreciated examples include mechanosensitive ion channels and cytoskeletal elements that provide the cells with key mechanical information from their surrounding environment.

In addition, molecules that show a unique force-bearing nature can also be considered mechanosensitive in a broader sense. For example, local formation and melting of nucleic acid duplexes, as well as higher-order structures such as G-quadruplexes, play crucial roles in replication, transcription, recombination, and more recently, genome editing. Moreover, some neuronal proteins involved in synaptic communications perform their functions by generating physical forces that exceed the levels of typical intermolecular interactions. No matter which example one studies, investigating nanomechanics of the involved biomolecules with high spatiotemporal precision will prove highly useful in revealing molecular mechanisms of the associated mechanobiological processes1,2,3.

Single-molecule force spectroscopy methods have served as powerful tools to examine the mechanical properties of biomolecules2,4,5,6. They can monitor structural changes in nucleic acids and proteins concurrently with the application of force, thereby examining force-dependent properties. Two well-known setups are optical tweezers and magnetic tweezers (MTs), which employ micron-sized beads to manipulate molecules5,6,7,8. In these platforms, polystyrene (for optical tweezers) or magnetic beads (for MTs) are tethered to target molecules (e.g., nucleic acids and proteins) via molecular "handles", typically made of short fragments of double-stranded DNA (dsDNA). The beads are then moved to exert force and imaged to track their locations that report on structural changes in target molecules. Optical and magnetic tweezers are largely interchangeable in their applications, but there exist important differences in their approaches to controlling force. Optical tweezers are intrinsically position-clamp instruments that trap beads in position, because of which the applied force fluctuates when a target construct undergoes shape changes; extension increase, such as from unfolding, loosens the tether and reduces tension, and vice versa. Although active feedback can be implemented to control the force in optical tweezers, MTs in contrast naturally operate as a force-clamp device, taking advantage of stable, far-field magnetic forces by permanent magnets, which can also withstand environmental perturbation.

Despite their long history and simple design, MTs have lagged behind optical tweezers in their applications to high-precision measurements, largely because of technical challenges in fast bead tracking. Recently, however, several groups have jointly led a multi-faceted improvement of both hardware and software for MT instruments2,9,10,11,12,13,14,15,16,17,18,19. In this work, we introduce an example of such a setup running at 1.2 kHz and describe how to use it to perform nanomechanical measurements on force-sensitive biomolecules. As model systems, we employ DNA hairpins and neuronal SNARE complexes and examine their fast, structural changes in the piconewton regime. DNA hairpins exhibit simple two-state transitions in a well-defined force range20,21, and therefore serve as toy models to verify the performance of a tweezer setup. As the SNARE proteins assemble into a force-sensitive complex that drives membrane fusion22, they have also been extensively studied by single-molecule force spectroscopy14,23,24,25. Standard approaches to analyzing data and extracting useful information on thermodynamics and kinetics are presented. We hope this article can facilitate the adoption of high-precision MTs in mechanobiological studies and motivate readers to explore their own force-sensitive systems of interest.

Protokół

All materials and equipment described in this protocol are listed in the Table of Materials. LabVIEW software to operate the high-speed MT setup described below, as well as the MATLAB scripts to analyze sample data, are deposited on GitHub (https://github.com/ShonLab/Magnetic-Tweezers) and publicly available.

1. Construction of apparatus

NOTE: The general principle of the high-speed MT construction is similar to standard, conventional MT systems, except for the use of a high-speed complementary metal oxide semiconductor (CMOS) camera and a high-power, coherent light source (Figure 1). Refer to other sources for more descriptions of standard MT instruments5,26,27.

  1. Set up an inverted microscope on an anti-vibration optical table. Install a high-speed CMOS camera and a frame grabber.
  2. Build a translation stage for manipulating magnets in 3D. Mount a motorized linear stage (>20 mm travel) vertically on top of a manual XY stage.
    NOTE: The vertical movement controls force, whereas the XY stage is for the manual alignment of magnets to the optical axis for the initial construction of the setup.
  3. Install a rotary stepper motor and a belt and pulley system for rotating magnets.
    NOTE: The belt transmits the rotary motion between the motor shaft and magnets that are a few centimeters apart. The rotation of magnets is internal to the translational manipulation.
  4. Mount the magnets. Use an acrylic holder (ordered from a manufacturing company; see Supplemental Figure S1) that can tightly house two identical magnets in parallel, with a well-defined 1 mm gap between the magnets (Figure 1B). To utilize the maximum force obtainable with a given pair of magnets, adjust the vertical position of the translation stage so that the bottom surface of the magnets aligns with the sample plane when it is moved to the lowest position.
    NOTE: Refer to Lipfert et al. for more information on the holder design and configuration of magnets28. The height and orientation of magnets are controlled by the LabVIEW software in conjunction with data acquisition.
  5. Viewing with a low-magnification objective lens, align the magnets to the center of the field of view. Check that rotating the magnets does not cause a large displacement of the center of the magnet pair.
    NOTE: If the midpoint between the magnets rotates about the axis of rotation, it is likely that the magnets are off-centered due to an imperfect holder. A small level of misalignment relative to the gap size is tolerable, as the magnet rotation is only for checking tethers and applying torques in specific applications.
  6. Install a superluminescent diode (SLD) for the illumination of beads. Pass the beam through the 1 mm gap between the two magnets. Make sure that the beam is properly collimated to fit in the gap and the illumination is not shadowed by the magnets.
  7. Install a piezo lens scanner on the nosepiece and mount a 100x oil-immersion objective lens (numerical aperture [NA]: 1.45) for bead tracking. To avoid potential artifacts in tracking results, make sure that the illumination is maintained uniformly when the magnets are moved. Finally, adjust the light level to the maximum brightness without saturating pixels.
    ​NOTE: For the comparison of different light sources for the high-speed tracking of beads, refer to Dulin et al.29.

2. Calibration of magnetic force

  1. Using polymerase chain reaction (PCR; see Table 1), prepare 5 kbp dsDNA fragments (using Primer B, Primer Z_5k, and λ-DNA) that are labeled with biotin on one end (for surface attachment) and azide on the other end (for bead attachment).
  2. Following section 6, prepare a flow cell with the 5 kbp molecules.
  3. Following section 7, identify a good bead-tether construct by verifying its extension and rotation. In particular, make sure to choose a bead with a minimal rotational trajectory (i.e., with a radius <200 nm) to minimize the bead height offset due to off-centered attachment30,31. Once a good tether is identified, start bead tracking, referring to section 9.
  4. If the setup is new, characterize its noise and stability for reliable high-resolution measurements. Place the magnet ~3 mm from the flow cell surface (to apply >10 pN and suppress the Brownian motion of a bead), track the z-position of the bead at 1.2 kHz, and compute the Allan deviation (AD) from the z-coordinate time series32,33 (Figure 2C). Check that AD values of a few nanometers are achievable in the high-speed regime (<0.1 s), and that differential tracking (magnetic bead position relative to a reference bead) reduces AD in the longer timescale.
    NOTE: We typically obtain an AD of <3 nm at the maximum rate (1.2 kHz or 0.83 ms resolution), and the AD keeps decreasing at least up to 10 s, implying a minimal drift. Others have reported similar values on similar setups9,10,11,12,34.
  5. With magnets in the resting position (F ~ 0 pN), record the x- and y-coordinates of the tethered bead at 1.2 kHz. Record the position for a sufficiently long period (that is, sufficiently longer than the characteristic relaxation time of fluctuation35) so that the Brownian motion is sufficiently sampled.
    NOTE: Here, the x-direction is along the direction of the magnetic field, whereas the movement in y represents the transverse motion perpendicular to the field.
  6. Move the magnets closer to the flow cell and repeat the bead-position measurements until the magnets gently touch the top of the flow cell. Move in large steps (e.g., 1-2 mm) when the magnets are more than 7 mm away from the sample plane (since the applied force increases slowly in the far field of magnets), but reduce the step size gradually (e.g., 0.1-0.5 mm) as they approach closer for finer calibration at higher force levels (Figure 2B).
  7. Calculate the force at each magnet position, d, using either of the two alternative methods (a MATLAB script "force calibration.m" including both methods is provided; see Supplemental File 1).
    1. Measure the variance of the bead's y-coordinates, figure-protocol-7061 (Figure 2D) and the mean z-position figure-protocol-7227 of the bead relative to the lowest position (Figure 2B, bottom). Then, use equation (1)7,27,36 to estimate the force (with a fixed bead radius R = 1,400 nm and thermal energy kR= 4.11 pN∙nm):
      figure-protocol-7710    (1)
    2. Alternatively, calculate the power spectral density (PSD) of the y-coordinates, Sy (Figure 2E). Determine the applied force F by fitting a double-Lorentzian model37 to the measured Sy using equation (2).
      figure-protocol-8187    (2)
      Here, figure-protocol-8326, R is bead radius, γy and γφ are the translational and rotational drag coefficients, respectively (estimated from the Stokes-Einstein equation), kRT is the thermal energy, f+ and f- are two characteristic frequencies obtained using equation (3).
      figure-protocol-8831 (3)
      NOTE: Since the tether extension L is a function of force that follows the well-established worm-like chain (WLC) model, the above expressions leave F as the only fitting parameter (we fix R to be 1,400 nm for simplicity because it is shared across all force levels and the exact value does not influence the results appreciably). When necessary, motion blur and aliasing from camera-based image acquisition must be considered38,39, but this effect is negligible in our high-speed measurements above 1 kHz with 5 kbp tethers.
  8. Repeat steps 2.4-2.7 for a few more constructs. Probe three to five different beads to average out the force variability among the magnetic beads.
    NOTE: Force variation among the magnetic beads in use should be considered to determine the proper number of constructs for averaging. This variability is small but can lead to more than 1 pN of error in the measured force, even for commercial products31. For most applications, where the absolute determination of the forces involved is not crucial, averaging the calibration results of three to five beads is generally sufficient. An alternative approach to account for this variation is to measure the force with individual tethers at the beginning of the experiment, which can be time-consuming. Another option is to embed hairpin structures that unzip at known force levels in each construct31.
  9. Plot the measured force as a function of magnet distance and fit a double exponential function to the data (Figure 2F) using equation (4).
    figure-protocol-10692    (4)
    Here, F0 (baseline), A1 and A2 (amplitudes), and d1 and d2 (decay constants) are fitting parameters. Make sure that the force values from the two methods, as well as the resulting double-exponential fits, largely agree (Figure 2F,G).
    NOTE: To confirm that force calibration is conducted properly, verify the force-extension relationship of the probed constructs by plotting the extension versus the measured force.
  10. To correct for the bead height offset zoff resulting from force-dependent tilting of the magnetic beads30,31, estimate zoff from the lateral offset xoff, considering the geometry of an off-centered tether with a bead radius using equation (5), and apply the values to the measured extension values. This step is implemented in the MATLAB script "force calibration.m" (lines 252-254).
    figure-protocol-11920    (5)
    NOTE: Although this correction makes small changes to extension, especially for the beads with a small radius of rotation (<200 nm), this offset often critically affects the elastic response, as seen in the change from Figure 2H to Figure 2I30,31.
  11. Check the persistence length Lp by fitting an extensible WLC model to the data using equation (6).
    figure-protocol-12576    (6)
    Here, L0 is the contour length (1.7 µm for 5 kbp) and K0 is the modulus for enthalpic stretching.
    NOTE: Although the Lp of dsDNA is well-accepted to be 40-50 nm in a typical buffer such as phosphate-buffered saline (PBS), the WLC formula applied to short molecules (<5 kbp) systematically underestimates Lp as L0 decreases31,40. This is because the classical WLC model presumes a polymer whose chain length is sufficiently longer than its persistence length. Here, we obtained Lp = 40 ± 3 nm for the 5 kbp construct (Figure 2H), and the extension correction further yielded a homogeneous K0 of 1,100 ± 200 pN (Figure 2I). Applying a finite WLC model31,40, as well as a correction for non-Gaussianity in extension distribution41, will slightly increase Lp.
  12. Once the force calibration is verified, apply the obtained fitting parameters of the double-exponential model to the provided LabVIEW software (Supplemental File 2) and wait for the software to compute the current force in real time from motor readings (i.e., magnet position). Since an analytic expression for the inverse function d(F) is not available, prepare a lookup table of d versus F in 0.1 pN steps by numerical estimation of for the d target force levels. Store this table in the software as well to command the force control.

3. Synthesis of DNA hairpins

NOTE: DNA hairpin constructs for MT experiments are prepared by PCR amplification of a 510 bp region in λ-DNA with two custom primers, one of which contains a hairpin structure on its 5′-end (Figure 3A). In this way, a hairpin motif is placed at one end of the PCR product.

  1. Prepare the primers.
    1. Forward primer: Primer B_hp that is 5′-biotin-labeled for glass surface attachment and binds to λ-DNA. This primer contains a hairpin motif with an 8 bp stem and a 6 nt loop, 5′ to the λ-binding region.
    2. Reverse primer: Primer Z_hp that is 5′-azide-labeled for magnetic bead attachment and binds to λ-DNA 1 kbp away from the forward primer.
  2. Set up and run the PCR with λ-DNA (template), nTaq polymerase, and standard PCR conditions (see Table 1). Clean up the product with a commercial purification kit.
  3. Measure the DNA concentration by UV absorption at 260 nm (A260) and perform agarose gel electrophoresis (2% gel) (see Table 2) to verify the product size. A typical yield is ~35 µL of ~600 nM solution.

4. Preparation of SNARE proteins

NOTE: Neuronal SNARE complexes are assembled by combining three purified rat proteins expressed from E. coli: VAMP2/synaptobrevin-2, syntaxin-1A, and SNAP-25 (Figure 3B). To facilitate their assembly, syntaxin and SNAP-25 are co-expressed with a VAMP2 fragment (lacking the N-terminal region; termed "ΔN-VAMP2") into a structure called the "ΔN-complex", and then mixed with full-length VAMP2 after DNA handle attachment to form full complexes.

  1. Prepare plasmids containing cDNA for the expression of SNARE proteins (DNA sequences for all plasmids are given in the Table of Materials).
    1. Prepare 6×His-tagged VAMP2 lacking the transmembrane domain (2-97; L32C/I97C for disulfide linkages) cloned into a pET28a vector.
    2. Prepare syntaxin-1A lacking the Habc and the transmembrane domain (191-267, I202C/I266C substitutions for disulfide linkages) cloned together with 6×His-tagged ΔN-VAMP2 (49-96) into a pETDuet-1 vector.
    3. Prepare the full-length SNAP-25 isoform b (2-206, all C to A) cloned into a pET28a vector. This will be used for preparing ΔN complexes.
    4. Prepare the 6×His-tagged full-length SNAP-25 isoform b (1-206, all C to A) cloned into a pET28a vector for direct addition to the MT assay buffer to reassemble the SNARE complexes after unfolding.
  2. Prepare two tubes of Rosetta (DE3) E. coli cells. Transform one group with VAMP2 plasmids (from step 4.1.1), one with both syntaxin-1A/ΔN-VAMP2 and untagged SNAP-25 plasmids (from steps 4.1.2 and 4.1.3) for expressing the ΔN-complex, and the other with His-tagged SNAP-25 plasmids (from step 4.1.4).
  3. Transfer the transformed cells into Luria-Bertani broth (LB) with appropriate antibiotics (here, kanamycin and chloramphenicol for VAMP2 and His-tagged SNAP-25; kanamycin, chloramphenicol, and ampicillin for ΔN-complex). Grow them at 37 °C in a shaking incubator (220 rpm) until the optical density (OD) of the broth reaches 0.7-0.9.
  4. Add 1 mM isopropyl β-d-1-thiogalactopyranoside (IPTG) to induce protein expression and incubate the cells for 3-4 h at 37 °C in a shaking incubator (220 rpm).
  5. Pellet down the cells by centrifuging the culture at 4,500 × g for 15 min at 4 °C.
  6. Prepare buffers for protein purification (see Table 2).
  7. Suspend SNARE-expressing cell pellets in 40 mL of ice-cold lysis buffer and lyse the cells by sonication on ice (15% amplitude, 5 s on and 5 s off, 30 min total).
  8. Centrifuge the lysate at 15,000 × g for 30 min at 4 °C to remove insoluble materials.
  9. Pass the supernatant through a gravity column filled with 1 mL of Ni-NTA resin. Wash the resin with wash buffer A, then with wash buffer B, and elute the proteins with 10 mL of elution buffer.
  10. Remove tris(2-carboxyethyl)phosphine (TCEP) and imidazole from the eluent by using a desalting column (follow the manufacturer's instructions). Elute the sample with PBS.
  11. Concentrate the proteins with centrifugal filters (10 kDa cutoff) to ~70 µM while maintaining the proteins in PBS (typically yielding 2 mL). Measure the protein concentration either by ultraviolet (UV) absorption at 280 nm (A280) or by the Bradford assay.
  12. Prepare small aliquots, flash-freeze in liquid nitrogen, and store at -80 °C until use.
    ​NOTE: Full SNARE complexes will be assembled after conjugating ΔN-complex on a DNA handle (see below).

5. Attachment of DNA handles

NOTE: Two 510 bp dsDNA handles containing primary amine groups on one end are first prepared by PCR, and the amine groups are then converted to maleimide groups by using a bifunctional crosslinker, SM(PEG)2. The two handles are then covalently linked to SNARE complexes via their cysteine groups for site-specific conjugation (Figure 3B).

  1. Prepare primers.
    1. Prepare forward primers: Primer B (for amplifying Handle B) that is 5′-biotin-labeled for glass surface attachment and binds to λ-DNA; Primer Z (for amplifying Handle Z) that is 5′-azide-labeled for magnetic bead attachment and has the same sequence as Primer B.
    2. Prepare a reverse primer: Primer N (shared for Handle B and Handle Z) that is 5′-amine-labeled for protein conjugation and binds to λ-DNA 510 bp away from the forward primer.
  2. Set up and run two sets of PCR reactions (18 tubes of 200 µL reaction for each handle) with λ-DNA (template), nTaq polymerase, and standard PCR conditions (see Table 1). Clean up the product with a PCR clean-up kit and elute each handle with 45 µL of ultrapure water. Use a minimal volume of water to obtain high concentrations of handles for an effective reaction in later steps.
  3. Measure the DNA concentration by A260. The typical yield is ~650 µL of ~2 µM solution for each handle. Keep small samples apart for later verification in agarose gel electrophoresis.
  4. React each handle (1 µM in PBS) with 5 mM SM(PEG)2. Incubate at room temperature with gentle rotation. After 1 h, use a DNA purification kit to remove unreacted SM(PEG)2. Elute each handle with 250 µL of PBS to obtain ~2 µM solutions.
  5. Mix the solutions of Handle B and ΔN-complex at a molar ratio of 1:16 (e.g., 1 µM Handle B and 16 µM ΔN-complex) in PBS and incubate for 2 h at room temperature with agitation. Keep apart a small sample for agarose gel electrophoresis.
  6. Add a solution of VAMP2 in a 2.5-fold molar excess over the ΔN-complex used in the previous step. Incubate the mixture for another 1 h at room temperature with agitation. Full SNARE complexes are assembled in this step.
  7. Remove free proteins by buffer exchange with fresh PBS and a centrifugal filter (100 kDa cutoff): centrifuge at 14,000 × g for 5 min at 4 °C, repeat at least 6x, and run for 15 min for the last spin. Measure the increase in the A260/A280 ratio to monitor the removal of free proteins. Keep apart a small sample for agarose gel electrophoresis.
  8. Add Handle Z to the solution in a 15-fold molar excess over Handle B. Keep the concentration of Handle Z at least above 1 µM to facilitate the reaction. Incubate the mixture overnight at 4 °C with agitation.
  9. Verify the intermediates (Handle B and its protein conjugates) and the final product (SNARE complex with two handles) by agarose gel electrophoresis (Figure 3B, inset) (see Table 2).
    NOTE: If the proteins are successfully attached to Handle B, a mobility shift will be detected. In particular, the formation of full SNARE complexes on DNA handles can be confirmed by their resistance to sodium dodecyl sulfate (SDS), unlike ΔN-complexes, that are disassembled in SDS and leave only syntaxin bound to DNA (compare b and c in Figure 3B).
  10. Prepare small aliquots, flash-freeze in liquid nitrogen, and store at -80 °C until use.
    ​NOTE: Although the final solution contains unreacted handles, only the wanted construct that is doubly labeled with biotin and azide will be selected during the sample assembly in a flow cell.

6. Fabrication of flow cells

NOTE: Flow cells for MT measurements are constructed from two glass coverslips bonded together by double-sided tape (Figure 3C). One coverslip is coated with a mixture of PEG and biotinylated polyethylene glycol (PEG) to avoid nonspecific binding and to enable specific tethering of target molecules via biotin-NeutrAvidin linkage (Figure 3D). Then, the solutions of materials for MT experiments are sequentially infused into a flow cell by using a syringe pump (Figure 3C,D).

  1. Prepare two glass coverslips, one each for the top (24 mm × 50 mm, No. 1.5 thickness) and the bottom (24 mm × 60 mm, No. 1.5 thickness) surface. Clean the coverslips by sonication in 1 M KOH for 30 min. After sonication, rinse the coverslips with distilled water and keep in water until the following step.
  2. PEGylate the bottom coverslip following published protocols42,43. Use N-[3-(trimethoxysilyl)propyl]ethylenediamine for silanization and a 1:100 (ww) mixture of biotin-PEG-SVA and mPEG-SVA in 100 mM bicarbonate buffer. Keep the PEGylated coverslips dry at -20 °C and store them for a few weeks.
  3. On the day of the experiments, take out the PEGylated coverslips and blow dry them with a nitrogen gun. Visually inspect them for dirt to make sure they are clean.
  4. To make the sample channels, prepare ~2 mm wide strips of double-sided tape and lay down four strips on a bottom coverslip (PEGylated surface up), parallel to and separated from each other by ~5 mm (Figure 3C).
    NOTE: This way, three 5 mm wide sample channels can be created in a single flow cell.
  5. Place a top coverslip in the center of the bottom coverslip, leaving ~5 mm of space on the short edges for channel inlets and outlets. Gently press the back of the top coverslip with tweezers to firmly seal the channels.
  6. To make an inlet reservoir, trim the edge of a 200 µL pipette tip. Cut out ~10 mm from the wider opening to allow for holding ~200 µL of solution. Make three of them for the three flow channels. To configure the outlets, prepare three syringe needles that fit the tubing for the syringe pump.
  7. Using 5 min epoxy, glue the reservoirs and needle hubs to the flow cell. Ensure a complete seal is formed to avoid leakage, and that the channels are not blocked with excess glue. Let it dry for at least 30 min.

7. Assembly of bead-tether constructs

NOTE: The solutions of materials for MT experiments, including the ones for bead-tether constructs, are sequentially introduced into flow cells by using a syringe pump (Figure 3C,D).

  1. Prepare magnetic beads. Take 5 mg of M270-epoxy beads from a stock solution (~3.3 × 108 beads in 167.5 µL of dimethylformamide) and replace the solvent with phosphate buffer (see Table 2) by magnetic separation of the beads.
  2. Prepare the beads at ~1.1 × 109 beads mL−1 in a phosphate buffer with 1 M ammonium sulfate and react them with 2 mM dibenzocyclooctyne (DBCO)-NH2. Incubate the mixture for 3 h on a rotating mixer at room temperature. After the reaction, wash the beads 3x with fresh phosphate buffer to remove unreacted molecules.
    NOTE: The washed beads can be stored without extra rotation at 4 °C for several weeks before use.
  3. Connect a needle on the flow-cell channel exit to the syringe pump with polyethylene tubing. Equilibrate the channels with PBS.
  4. Introduce the following solutions sequentially into the channel by suctioning with the pump: NeutrAvidin, target constructs (DNA hairpins or SNARE complexes with DNA handles), reference polystyrene beads, and DBCO-coated magnetic beads. Before use, vortex the bead solutions thoroughly to disperse potential bead aggregates.
  5. Wash away unbound beads while applying 0.1 pN of force.
    NOTE: The application of a small upward force facilitates the removal of unbound beads and helps avoid the rupture of specifically bound bead-tether constructs.
  6. For experiments with SNARE complexes, include 1.5 µM SNAP-25 in the final buffer.
    ​NOTE: The free SNAP-25 molecules can rebind SNARE complexes after unfolding and allow repeated measurements on a single complex.

8. Identification of target constructs

  1. On the surface of a flow-cell channel, search for the magnetic beads that are tethered by single molecules of the target construct. Make sure a reference bead is located nearby.
  2. Rotate a candidate bead and check that it swivels freely. If the bead is tethered by multiple molecules, it exhibits a constrained motion.
  3. Rotate the bead for a few complete turns and find out the radius of rotation (this function is implemented in the provided software). Preferably, choose a bead with a small rotational radius.
    NOTE: This radius indicates how much the bead is off-centered from the tether axis, which is randomly determined during the bead-tether assembly30,31. In all experiments, minimal off-centering of a bead alleviates many artifacts associated with the high bead radius to tether extension ratio we use.
  4. Increase the force from 0 to 5 pN to identify good single-tethered beads. Look for a large change in the diffraction pattern of a bead resulting from the stretching of a 1 kbp tether (or the equivalent two 510 bp handles). If the diffraction pattern does not change significantly, lower the force to zero and scan for another candidate bead.
    ​NOTE: The ~300 nm lifting of a bead can be readily noticed from the raw images without actually starting the tracking process.

9. Bead tracking for extension measurements

NOTE: Tracking of beads is performed by analyzing bead images in real time in the LabVIEW software provided with this article. The tracking method and its variants have been used in most of the conventional MT systems and are explained in previous literature2,5,7,26. By measuring the position of a magnetic bead relative to a fixed reference bead (i.e., differential tracking), the position measurements become extremely robust to an external perturbation.

  1. Once a proper magnetic bead is located together with a reference bead, click on the Calibrate button to start preparing for bead tracking.
  2. Click on the beads in the image to define the locations of the beads. The images will then be cropped to regions of interest (ROIs) (e.g., 150 x 150 pixels for a 3 µm bead) around the beads and then further analyzed to extract the precise bead coordinates.
  3. Wait for the magnet rotation to complete. This process records the x- and y-coordinates of the bead (by computing 2D cross-correlation44 or by using radial symmetry45 of the bead images, with comparable performance) while rotating the magnets to document the off-centered attachment of the bead31.
  4. For tracking in the z-direction, wait for the software to generate a lookup table of diffraction images of the beads at different distances from the focal plane. This is carried out by stepping the objective lens with a piezo scanner in equidistant steps and recording fluctuation-averaged bead images at each position. Then, the z-coordinates of the beads in actual experiments are determined by comparing the real-time bead images to the lookup table with interpolation7.
  5. When the lookup table generation is finished, enable tracking and autofocusing (press the Track? and AF? Buttons) and click on the Acquire button to start recording bead positions.
    ​NOTE: Autofocusing is optional but recommended to correct for the stage drift in z during the acquisition.

10. Force application schemes

  1. Force-ramp experiments: To verify the force-extension relationship of the construct, apply a force ramp up and down at a constant loading rate (± 1.0 pN s−1) (Figure 4A). For example, apply three rounds of a 0-20-0 pN cycle to verify the overall length of the construct and the force-extension curve of the handles.
  2. By specifying the tether parameters in the software, overlay a WLC force-extension curve on top of the measured data, and determine whether the target bead is tethered by a genuine sample construct with proper DNA handles. Use the known contour length (e.g., ~340 nm for 1 kbp dsDNA) and WLC persistence length (30-45 nm for short dsDNA31) of the construct as a starting point. Apply the extension correction method described in step 2.11 if necessary.
  3. If the construct is verified, examine the force-extension response in detail to look for additional extension resulting from the target molecules-hairpins or SNARE complexes.
  4. Constant-force experiments: Gradually vary the applied force in discrete steps to probe the force sensitivity of the target molecules (Figure 4B).
    NOTE: MTs enable simple and effective constant-force experiments because the applied force is maintained constant when the magnets are held still.
    1. For DNA hairpins, apply 4-8 pN of force with 0.2-0.5 pN steps, and measure the bead position for ~10 s at each force level.
    2. For SNARE complexes, apply 14-16 pN of force with 0.1-0.2 pN steps, and measure the bead position for ~10 s at each force level.
  5. Force-jump experiments: Observe the transition events of SNARE complexes.
    NOTE: Force-jump experiments, like constant-force experiments, involve changes in force levels. However, force jumps employ more abrupt changes in the applied force, allowing for the monitoring of force-triggered events in the probed molecules, such as a sudden rupture of protein complexes. For example, since SNARE complexes exhibit structural hysteresis in force cycling23, it is informative to perform force-jump experiments and measure the latency to transition (Figure 4C).
    1. Unzipping: Peeling off of a VAMP2 molecule from an intact, ternary SNARE complex, leaving a binary complex of syntaxin-1A and SNAP-25.
    2. Rezipping: Zipping of the unzipped VAMP2 molecule to regenerate an intact SNARE complex.
      1. Unfolding: Full disassembly of a SNARE complex accompanied by complete dissociation of SNAP-25. Only VAMP2 and syntaxin molecules remain in the construct after unfolding.
      2. Refolding: Regeneration of a SNARE complex upon binding of a free SNAP-25 molecule from the buffer.
  6. At 2 pN, induce the assembly of an intact SNARE complex by waiting (~30 s) for the association of a free SNAP25 molecule. A sudden decrease in extension is observed upon the formation of a SNARE complex.
  7. To observe unzipping events, wait for a few seconds at 10-12 pN, and then move to 14-15 pN abruptly with the maximum motor speed possible. Depending on the target force, the SNARE complex will exhibit either a reversible transition between partially unzipped intermediates (as in constant-force experiments) or a ~25 nm jump to a higher, unzipped state after a random waiting time (or latency).
  8. To observe rezipping events, lower the force to 10-12 pN immediately after unzipping is observed. Again, the SNARE complex exhibits a stochastic transition to the lower, zippered state after some random latency. If unfolding has occurred after unzipping, the complex will fail to rezip, as a SNAP-25 molecule will be missing.
  9. To observe unfolding events, wait for a longer period after unzipping is observed to detect a further increase in extension (~2 nm).

11. Data analysis

NOTE: The types of analysis one can conduct with MT data depend on the target system. However, there are common approaches to extracting useful information from the respective experiments described in Figure 4. All analyses are performed with MATLAB (R2021a) using the custom codes provided with this article. These codes generate plots by using the same data presented in this article. Note that while raw data from 100 Hz tracking was directly taken for analysis, data from 1.2 kHz tracking was typically median-filtered (with a five-point sliding window) prior to analysis to reduce noise (except for noise analysis).

  1. Force-ramp experiments: Analyze the force-extension relationship (e.g., elasticity of polymers) and transition the force to extract information on nanomechanical properties.
  2. Constant-force experiments: Analyze state populations and dwell time (or transition rate) as a function of force to extract structural (e.g., regions involved in transition), thermodynamic (e.g., free energy difference), and kinetic (e.g., energy barrier) parameters of the conformational changes.
  3. Force-jump experiments: Analyze rupture kinetics (e.g., protein-protein interactions and receptor-ligand binding) or the lifetime of transient intermediates (e.g., unfolding of biomolecules) to extract the stability of target molecules and their states.
  4. As representative applications, analyze the sample data for DNA hairpins and SNARE complexes:
    1. Two-state transitions of a DNA hairpin: unzipping force, opening distance, force dependence of population shift, and state assignment and transition rate measurements with a hidden Markov model (HMM) (MATLAB codes provided).
    2. Conformational changes of SNARE complexes: unzipping force, force dependence of intermediate states and unzipping latency, hysteresis in rezipping, and unfolding/refolding behavior.
      NOTE: Force-extension models for DNA handles, DNA hairpins, and SNARE complex conformations are given in previous references14,31.

Wyniki

Force calibration
The results from the two force measurement methods (beads' lateral displacement variance and power spectrum analysis) differed by 0-2 pN (Figure 2G). According to the results in Figure 2F, we can reliably reach up to 30 pN with regular neodymium magnets.

Two-state transitions of an 8 bp DNA hairpin
We first investigated the nanomechanics of a short DNA hairpin (

Dyskusje

In this work, we introduced a single-molecule force spectroscopy setup that can observe structural changes of biomolecules at high spatiotemporal precision. The high-speed CMOS camera used acquires 1,200 frames s−1 at 1,280 x 1,024 resolution, enabling 1.2 kHz bead tracking. However, the speed of measurements is currently limited by the bead tracking software, so the ROI is typically reduced to smaller areas in high-speed measurements. The high power of the SLD provides a bright illumination that is crit...

Ujawnienia

The authors have no conflicts of interest to declare.

Podziękowania

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2022R1C1C1012176, NRF-2021R1A4A1031754, and NRF- 2021R1A6A1A10042944). S.-H.R. was supported by the NRF grant (2021R1C1C2009717).

Materiały

NameCompanyCatalog NumberComments
Materials for construct synthesis
Agarose gel electrophoresis systemAdvanceMupid-2plus
DNA ladderBioneerD-1037
nTaq polymeraseEnzynomicsP050A
PCR purification kitLaboPassCMR0112
PEGylated SMCC crosslinker / SM(PEG)2ThermoFisher Scientific22102For SNARE–DNA coupling
Primer BBioneer5'-Biotin/TCGCCACCATCATTTCCA-3'For 5-kbp force calibration construct and DNA handles
Primer B_hpIDT5'-Biotin/TTTTTTTTTTGTTCTCTATTT
TTTTAGAGAAC /AP site/ /AP site/ TCGCCACCATCATTTCCA-3'
For hairpin construct
Primer NBioneer5'-C6Amine/CATGTGGGTGACGCGAAA-3'For DNA handles
Primer ZBioneer5'-Azide/TCGCCACCATCATTTCCA-3'For DNA handles
Primer Z_5kBioneer5'-Azide/TTAGAGAGTATGGGTATATGACA
TCG-3'
For 5-kbp force calibration construct
Primer Z_hpBioneer5'-Azide/GTGGCAGCATGACACC-3'For hairpin construct
SYBR Safe DNA Gel StainThermoFisher ScientificS33102
λ-DNABioneerD-2510Template strand for PCR
DNA sequences for SNARE proteins
6×His-tagged SNAP-25b (2-206; capitalized) in pET28ahomemadetggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctat
gagaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagcgg
aagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCACA
GCAGCGGCCTGGTGCCGCGC
GGCAGCCATACTAGCGGAGAT
ATCGCCGAGGACGCAGACAT
GCGCAATGAGCTGGAGGAGA
TGCAGAGGAGGGCTGACCAG
CTGGCTGATGAGTCCCTGGA
AAGCACCCGTCGCATGCTGC
AGCTGGTTGAAGAGAGTAAA
GATGCTGGCATCAGGACTTT
GGTTATGTTGGATGAGCAAG
GCGAACAACTGGAACGCATT
GAGGAAGGGATGGACCAAAT
CAATAAGGACATGAAAGAAG
CAGAAAAGAATTTGACGGAC
CTAGGAAAATTCGCCGGCCT
TGCCGTGGCCCCCGCCAAC
AAGCTTAAATCCAGTGATGC
TTACAAAAAAGCCTGGGGC
AATAATCAGGATGGAGTAGT
GGCCAGCCAGCCTGCCCG
TGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTG
GCTTCATCCGCAGGGTAAC
AAATGATGCCCGGGAAAAT
GAGATGGATGAGAACCTG
GAGCAGGTGAGCGGCATC
ATCGGAAACCTCCGCCAC
ATGGCTCTAGACATGGGCA
ATGAGATTGACACCCAGA
ATCGCCAGATCGACAGGA
TCATGGAGAAGGCTGATT
CCAACAAAACCAGAATTG
ATGAAGCCAACCAACGTG
CAACAAAGATGCTGGGAA
GTGGTTAAggatccgaattcgag
ctccgtcgacaagcttgcggccgcactc
gagcaccaccaccaccaccactgagat
ccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgag
caataactagcataaccccttggggcct
ctaaacgggtcttgaggggttttttgctga
aaggaggaactatatccggat
6×His-tagged VAMP2 (2-97, L32C/I97C; capitalized) in pET28ahomemadetggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCAC
AGCAGCGGCCTGGTGCCGC
GCGGCAGCCATATGGCAGAT
CTCTCGGCTACCGCTGCCAC
CGTCCCGCCTGCCGCCCCG
GCCGGCGAGGGTGGCCCCC
CTGCACCTCCTCCAAATCTTA
CCAGTAACAGGAGATGCCAG
CAGACCCAGGCCCAGGTGG
ATGAGGTGGTGGACATCATG
AGGGTGAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAG
CTATCGGAACTGGATGATCG
CGCAGATGCCCTCCAGGCA
GGGGCCTCCCAGTTTGAAA
CAAGTGCAGCCAAGCTCAA
GCGCAAATACTGGTGGAAA
AACCTCAAGATGATGTGCTA
Aggatccgaattcgagctccgtcg
acaagcttgcggccgcactcgagcaccacca
ccaccaccactgagatccggctgctaacaaa
gcccgaaaggaagctgagttggctgctgcca
ccgctgagcaataactagcataaccccttgg
ggcctctaaacgggtcttgaggggttttttg
ctgaaaggaggaactatatccggat
6×His-tagged ΔN-VAMP2 (49–96; capitalized) and Syntaxin-1A (191–267, I202C/I266C; capitalized) in pETDuet-1homemadeggggaattgtgagcggataacaattcccctc
tagaaataattttgtttaactttaagaagga
gatataccATGGGCAGCAGCCATCA
TCATCATCATCACAGCAGCGG
CCTGGAAGTTCTGTTCCAGGG
GCCCGGTAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAGCT
ATCGGAACTGGATGATCGCGC
AGATGCCCTCCAGGCAGGGGC
CTCCCAGTTTGAAACAAGTGC
AGCCAAGCTCAAGCGCAAATAC
TGGTGGAAAAACCTCAAGATGAT
GTAAgcggccgcataatgcttaagtcgaaca
gaaagtaatcgtattgtacacggccgcataa
tcgaaattaatacgactcactataggggaat
tgtgagcggataacaattccccatcttagta
tattagttaagtataagaaggagatatacat
ATGGCCCTCAGTGAGATCGAGA
CCAGGCACAGTGAGTGCATC
AAGTTGGAGAACAGCATCCG
GGAGCTACACGATATGTTCAT
GGACATGGCCATGCTGGTGG
AGAGCCAGGGGGAGATGATT
GACAGGATCGAGTACAATGTG
GAACACGCTGTGGACTACGTG
GAGAGGGCCGTGTCTGACACC
AAGAAGGCCGTCAAGTACCAG
AGCAAGGCACGCAGGAAGAA
GTGCATGATCTAActcgagtc
tggtaaagaaaccgctgctgcgaaatttgaa
cgccagcacatggactcgtctactagcgcag
cttaattaacctaggctgctgccaccgctga
gcaataactagcataaccccttggggcctct
aaacgggtcttgaggggttttttgctgaaag
gaggaactatatccggattggcgaatgggac
gcgccctgtagcggcgcattaagcgcggcgg
gtgtggtggttacgcgcagcgtgaccgctac
acttgccagcgccctagcgcccgctcctttc
gctttcttcccttcctttctcgccacgttcg
ccggctttccccgtcaagctctaaatcgggg
gctccctttagggttccgatttagtgcttta
cggcacctcgaccccaaaaaacttgattagg
gtgatggttcacgtagtgggccatcgccctg
atagacggtttttcgccctttgacgttggag
tccacgttctttaatagtggactcttgttcc
aaactggaacaacactcaaccctatctcggt
ctattcttttgatttataagggattttgccg
atttcggcctattggttaaaaaatgagctga
tttaacaaaaatttaacgcgaattttaacaa
aatattaacgtttacaatttctggcggcacg
atggcatgagattatcaaaaaggatcttcac
ctagatccttttaaattaaaaatgaagtttt
aaatcaatctaaagtatatatgagtaaactt
ggtctgacagttaccaatgcttaatcagtga
ggcacctatctcagcgatctgtctatttcgt
tcatccatagttgcctgactccccgtcgtgt
agataactacgatacgggagggcttaccatc
tggccccagtgctgcaatgataccgcgagac
ccacgctcaccggctccagatttatcagcaa
taaaccagccagccggaagggccgagcgca
gaagtggtcctgcaactttatccgcctccatc
cagtctattaattgttgccgggaagctagag
taagtagttcgccagttaatagtttgcgcaa
cgttgttgccattgctacaggcatcgtggtg
tcacgctcgtcgtttggtatggcttcattca
gctccggttcccaacgatcaaggcgagttac
atgatcccccatgttgtgcaaaaaagcggtt
agctccttcggtcctccgatcgttgtcagaa
gtaagttggccgcagtgttatcactcatggt
tatggcagcactgcataattctcttactgtc
atgccatccgtaagatgcttttctgtgactg
gtgagtactcaaccaagtcattctgagaata
gtgtatgcggcgaccgagttgctcttgcccg
gcgtcaatacgggataataccgcgccacata
gcagaactttaaaagtgctcatcattggaaa
acgttcttcggggcgaaaactctcaaggatc
ttaccgctgttgagatccagttcgatgtaac
ccactcgtgcacccaactgatcttcagcatc
ttttactttcaccagcgtttctgggtgagcaaa
aacaggaaggcaaaatgccgcaaaaaagg
gaataagggcgacacggaaatgttgaatact
catactcttcctttttcaatcatgattgaag
catttatcagggttattgtctcatgagcgga
tacatatttgaatgtatttagaaaaataaac
aaataggtcatgaccaaaatcccttaacgtg
agttttcgttccactgagcgtcagaccccgt
agaaaagatcaaaggatcttcttgagatcct
ttttttctgcgcgtaatctgctgcttgcaaa
caaaaaaaccaccgctaccagcggtggtttg
tttgccggatcaagagctaccaactcttttt
ccgaaggtaactggcttcagcagagcgcaga
taccaaatactgtccttctagtgtagccgta
gttaggccaccacttcaagaactctgtagca
ccgcctacatacctcgctctgctaatcctgt
taccagtggctgctgccagtggcgataagtc
gtgtcttaccgggttggactcaagacgatag
ttaccggataaggcgcagcggtcgggctgaa
cggggggttcgtgcacacagcccagcttgga
gcgaacgacctacaccgaactgagataccta
cagcgtgagctatgagaaagcgccacgcttccc
gaagggagaaaggcggacaggtatccggta
agcggcagggtcggaacaggagagcgcac
gagggagcttccagggggaaacgcctggtatc
tttatagtcctgtcgggtttcgccacctctg
acttgagcgtcgatttttgtgatgctcgtca
ggggggcggagcctatggaaaaacgccagc
aacgcggcctttttacggttcctggccttttg
ctggccttttgctcacatgttctttcctgcg
ttatcccctgattctgtggataaccgtatta
ccgcctttgagtgagctgataccgctcgccgc
agccgaacgaccgagcgcagcgagtcagtg
agcgaggaagcggaagagcgcctgatgcgg
tattttctccttacgcatctgtgcggtatttc
acaccgcatatatggtgcactctcagtacaa
tctgctctgatgccgcatagttaagccagta
tacactccgctatcgctacgtgactgggtca
tggctgcgccccgacacccgccaacacccgc
tgacgcgccctgacgggcttgtctgctcccg
gcatccgcttacagacaagctgtgaccgtct
ccgggagctgcatgtgtcagaggttttcacc
gtcatcaccgaaacgcgcgaggcagctgcgg
taaagctcatcagcgtggtcgtgaagcgatt
cacagatgtctgcctgttcatccgcgtccag
ctcgttgagtttctccagaagcgttaatgtc
tggcttctgataaagcgggccatgttaaggg
cggttttttcctgtttggtcactgatgcctc
cgtgtaagggggatttctgttcatgggggta
atgataccgatgaaacgagagaggatgctca
cgatacgggttactgatgatgaacatgcccg
gttactggaacgttgtgagggtaaacaactg
gcggtatggatgcggcgggaccagagaaaaa
tcactcagggtcaatgccagcgcttcgttaa
tacagatgtaggtgttccacagggtagccag
cagcatcctgcgatgcagatccggaacataa
tggtgcagggcgctgacttccgcgtttccag
actttacgaaacacggaaaccgaagaccatt
catgttgttgctcaggtcgcagacgttttgc
agcagcagtcgcttcacgttcgctcgcgtat
cggtgattcattctgctaaccagtaaggcaa
ccccgccagcctagccgggtcctcaacgaca
ggagcacgatcatgctagtcatgccccgcgc
ccaccggaaggagctgactgggttgaaggct
ctcaagggcatcggtcgagatcccggtgcct
aatgagtgagctaacttacattaattgcgtt
gcgctcactgcccgctttccagtcgggaaac
ctgtcgtgccagctgcattaatgaatcggcc
aacgcgcggggagaggcggtttgcgtattgg
gcgccagggtggtttttcttttcaccagtga
gacgggcaacagctgattgcccttcaccgcc
tggccctgagagagttgcagcaagcggtcca
cgctggtttgccccagcaggcgaaaatcctg
tttgatggtggttaacggcgggatataacat
gagctgtcttcggtatcgtcgtatcccacta
ccgagatgtccgcaccaacgcgcagcccgga
ctcggtaatggcgcgcattgcgcccagcgcc
atctgatcgttggcaaccagcatcgcagtgg
gaacgatgccctcattcagcatttgcatggt
ttgttgaaaaccggacatggcactccagtcg
ccttcccgttccgctatcggctgaatttgat
tgcgagtgagatatttatgccagccagccag
acgcagacgcgccgagacagaacttaatggg
cccgctaacagcgcgatttgctggtgaccca
atgcgaccagatgctccacgcccagtcgcgt
accgtcttcatgggagaaaataatactgttg
atgggtgtctggtcagagacatcaagaaata
acgccggaacattagtgcaggcagcttccac
agcaatggcatcctggtcatccagcggatag
ttaatgatcagcccactgacgcgttgcgcga
gaagattgtgcaccgccgctttacaggcttc
gacgccgcttcgttctaccatcgacaccacc
acgctggcacccagttgatcggcgcgagatt
taatcgccgcgacaatttgcgacggcgcgtg
cagggccagactggaggtggcaacgccaatc
agcaacgactgtttgcccgccagttgttgtg
ccacgcggttgggaatgtaattcagctccgc
catcgccgcttccactttttcccgcgttttc
gcagaaacgtggctggcctggttcaccacgc
gggaaacggtctgataagagacaccggcata
ctctgcgacatcgtataacgttactggtttc
acattcaccaccctgaattgactctcttccg
ggcgctatcatgccataccgcgaaaggtttt
gcgccattcgatggtgtccgggatctcgacg
ctctcccttatgcgactcctgcattaggaag
cagcccagtagtaggttgaggccgttgagca
ccgccgccgcaaggaatggtgcatgcaagga
gatggcgcccaacagtcccccggccacgggg
cctgccaccatacccacgccgaaacaagcgc
tcatgagcccgaagtggcgagcccgatcttc
cccatcggtgatgtcggcgatataggcgcca
gcaaccgcacctgtggcgccggtgatgccgg
ccacgatgcgtccggcgtagaggatcgagat
cgatctcgatcccgcgaaattaatacgactc
actata
SNAP-25b (1–206, all C to A; capitalized) in pET28ahomemadetggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcc
agggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGCCGA
GGACGCAGACATGCGCAATG
AGCTGGAGGAGATGCAGAGG
AGGGCTGACCAGCTGGCTGA
TGAGTCCCTGGAAAGCACCC
GTCGCATGCTGCAGCTGGTT
GAAGAGAGTAAAGATGCTGG
CATCAGGACTTTGGTTATGTT
GGATGAGCAAGGCGAACAAC
TGGAACGCATTGAGGAAGGG
ATGGACCAAATCAATAAGGAC
ATGAAAGAAGCAGAAAAGAAT
TTGACGGACCTAGGAAAATTC
GCCGGCCTTGCCGTGGCCCC
CGCCAACAAGCTTAAATCCAG
TGATGCTTACAAAAAAGCCTG
GGGCAATAATCAGGATGGAGT
AGTGGCCAGCCAGCCTGCCC
GTGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTGGC
TTCATCCGCAGGGTAACAAAT
GATGCCCGGGAAAATGAGATG
GATGAGAACCTGGAGCAGGT
GAGCGGCATCATCGGAAACCT
CCGCCACATGGCTCTAGACAT
GGGCAATGAGATTGACACCCA
GAATCGCCAGATCGACAGGAT
CATGGAGAAGGCTGATTCCAA
CAAAACCAGAATTGATGAAGC
CAACCAACGTGCAACAAAGAT
GCTGGGAAGTGGTTAA
ctcgagcaccaccaccaccaccactgag
atccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgagc
aataactagcataaccccttggggcctc
taaacgggtcttgaggggttttttgctgaa
aggaggaactatatccggat
Materials for protein purificaiton
2-MercaptoethanolSIGMAM3148-25ML
AgarLPS SolutionAGA500
Ampicillin, Sodium saltPLSAC1043-005-00
ChloramphenicolPLSCR1023-050-00
Competent cells (E. coli)Novagen70956Rosetta(DE3)pLysS
GlycerolSIGMAG5516-500ML
HEPESSIGMAH4034-100G
Hydrochloric acid / HClSIGMA320331-500ML
ImidazoleSIGMAI2399-100G
Isopropyl β-D-1-thiogalactopyranoside / IPTGSIGMA10724815001
Kanamycin SulfatePLSKC1001-005-02
Luria-Bertani (LB) BrothLPS SolutionLB-05
Ni-NTA resinQiagen30210
PD MiniTrap G-25 (desalting column)CytivaGE28-9180-07For instructions, see: https://www.cytivalifesciences.com/en/us/shop/chromatography/prepacked-columns/desalting-and-buffer-exchange/pd-minitrap-desalting-columns-with-sephadex-g-25-resin-p-06174
Phenylmethylsulfonyl fluoride / PMSFThermoFisher Scientific36978
Plasmids for SNARE proteinscloned in houseN/AAvailable upon request
Protease inhibitor cocktailgenDEPOTP3100
Sodium chlorideSIGMAS5886-500G
Sodium phosphate dibasic / Na2HPO4SIGMAS7907-100G
Sodium phosphate monobasic / NaH2PO4SIGMAS3139-250G
Tris(2-carboxyethyl)phosphine / TCEPSIGMAC4706-2G
Trizma baseSIGMAT1503-250G
Materials for sample assembly
Biotin-PEG-SVALAYSAN BIOBIO-PEG-SVA-5K-100MG & MPEG-SVA-5K-1gFor PEGylation
Dibenzocyclooctyne-amine / DBCO-NH2SIGMA761540-10MGFor bead coating
Double-sided tape3M136For flow cell assembly
Epoxy glueDEVCONS-208For flow cell assembly
Glass coverslip for bottom surfaceVWR48393-251Rectangular, 60×24 mm, #1.5
Glass coverslip for top surfaceVWR48393-241Rectangular, 50×24 mm, #1.5
Magnetic beadThermoFisher Scientific14301Dynabeads M-270 Epoxy, 2.8 μm
mPEG-SVALAYSAN BIOmPEG-SVA 1gFor PEGylation
N,N-Dimethylformamide / DMFSIGMAD4551-250MLFor bead coating
N-[3-(trimethoxysilyl)propyl]ethylenediamineSIGMA104884-100MLFor PEGylation
NeutravidinThermoFisher Scientific31000For sample tethering
Phosphate buffered saline / PBS, pH 7.2PLSPR2007-100-00
Plastic syringeNorm-jectA55 ml, luer tip
Polyethylene TubingSCIBB31695-PE/4PE-60
Reference beadSPHEROTECHSVP-30-5Streptavidin-coated Polystyrene Particles; 3.0-3.4 µm
Syringe needleKovax21G-1 1/4''21 G
Syringe pumpKD SCIENTIFIC788210
Equipment for magnetic tweezer instrument
1-axis motorized microtranslation stagePIM-126.PD1For vertical positioning of magnets
2-axis manual translation stageST1LEE400For alignment of magnets to the optical axis
Acrylic holder for magnetsDaiKwang Precisioncustum orderDrawing available upon request
Frame grabberActive SiliconAS-FBD-4XCXP6-2PE8
High-speed CMOS cameraMikrotronEoSens 3CXP
Inverted microscopeOlympusIX73P2F-1-2
Neodymium magnetsLG magnetND 10x10x12tDimension: 10 mm × 10 mm × 12 mm; two needed
Objective lensOlympusUPLXAPO100XOOil-immersion, NA 1.45
Objective lens nanopositionerMad City LabsNano-F100S
Rotation stepper motorAUTONICSA3K-S545WFor rotating magnets
Superluminescent diodeQPHOTONICSQSDM-680-2680 nm
Software
LabVIEWNational Instrumentsv20.0f1
MATLABMathWorksv2021a

Odniesienia

  1. Le, S., Liu, R., Lim, C. T., Yan, J. Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods. 94, 13-18 (2016).
  2. Choi, H. -. K., Kim, H. G., Shon, M. J., Yoon, T. -. Y. High-resolution single-molecule magnetic tweezers. Annual Review of Biochemistry. 91 (1), 33-59 (2022).
  3. Yang, T., Park, C., Rah, S. -. H., Shon, M. J. Nano-precision tweezers for mechanosensitive proteins and beyond. Molecules and Cells. 45 (1), 16-25 (2022).
  4. Neuman, K. C., Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods. 5 (6), 491-505 (2008).
  5. De Vlaminck, I., Dekker, C. Recent advances in magnetic tweezers. Annual Review of Biophysics. 41 (1), 453-472 (2012).
  6. Bustamante, C. J., Chemla, Y. R., Liu, S., Wang, M. D. Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers. 1, 25 (2021).
  7. Gosse, C., Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical Journal. 82 (6), 3314-3329 (2002).
  8. Smith, S. B., Finzi, L., Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 258 (5085), 1122-1126 (1992).
  9. Lansdorp, B. M., Tabrizi, S. J., Dittmore, A., Saleh, O. A. A high-speed magnetic tweezer beyond 10,000 frames per second. Review of Scientific Instruments. 84 (4), 044301 (2013).
  10. Cnossen, J. P., Dulin, D., Dekker, N. H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Review of Scientific Instruments. 85 (10), 103712 (2014).
  11. Dulin, D., et al. High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophysical Journal. 109 (10), 2113-2125 (2015).
  12. Huhle, A., et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nature Communications. 6 (1), 5885 (2015).
  13. Popa, I., et al. A HaloTag anchored ruler for week-long studies of protein dynamics. Journal of the American Chemical Society. 138 (33), 10546-10553 (2016).
  14. Shon, M. J., Kim, H., Yoon, T. -. Y. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nature Communications. 9 (1), 3639 (2018).
  15. Tapia-Rojo, R., Eckels, E. C., Fernández, J. M. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proceedings of the National Academy of Sciences. 116 (16), 7873-7878 (2019).
  16. Löf, A., et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proceedings of the National Academy of Sciences. 116 (38), 18798-18807 (2019).
  17. Tapia-Rojo, R., Alonso-Caballero, A., Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Science Advances. 6 (21), (2020).
  18. Rieu, M., et al. Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Science Advances. 7 (6), (2021).
  19. Rieu, M., Valle-Orero, J., Ducos, B., Allemand, J. -. F., Croquette, V. Single-molecule kinetic locking allows fluorescence-free quantification of protein/nucleic-acid binding. Communications Biology. 4 (1), 1083 (2021).
  20. Woodside, M. T., et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proceedings of the National Academy of Sciences. 103 (16), 6190-6195 (2006).
  21. Camunas-Soler, J., Ribezzi-Crivellari, M., Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annual Review of Biophysics. 45 (1), 65-84 (2016).
  22. Südhof, T. C., Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science. 323 (5913), 474-477 (2009).
  23. Gao, Y., et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 337 (6100), 1340-1343 (2012).
  24. Zorman, S., et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife. 3, e03348 (2014).
  25. Zhang, Y., Hughson, F. M. Chaperoning SNARE folding and assembly. Annual Review of Biochemistry. 90 (1), 581-603 (2021).
  26. Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G., Dekker, N. H. Magnetic tweezers for single-molecule experiments. Handbook of Single-Molecule Biophysics. , 371-395 (2009).
  27. You, H., Le, S., Chen, H., Qin, L., Yan, J. Single-molecule manipulation of G-quadruplexes by magnetic tweezers. Journal of Visualized Experiments. (127), e56328 (2017).
  28. Lipfert, J., Hao, X., Dekker, N. H. Quantitative modeling and optimization of magnetic tweezers. Biophysical Journal. 96 (12), 5040-5049 (2009).
  29. Dulin, D., Barland, S., Hachair, X., Pedaci, F. Efficient illumination for microsecond tracking microscopy. PLoS One. 9 (9), e107335 (2014).
  30. Klaue, D., Seidel, R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Physical Review Letters. 102 (2), 028302 (2009).
  31. Shon, M. J., Rah, S. -. H., Yoon, T. -. Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Science Advances. 5 (6), 1697 (2019).
  32. Czerwinski, F., Richardson, A. C., Oddershede, L. B. Quantifying noise in optical tweezers by Allan variance. Optics Express. 17 (15), 13255-13269 (2009).
  33. Lansdorp, B. M., Saleh, O. A. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Review of Scientific Instruments. 83 (2), 025115 (2012).
  34. Ostrofet, E., Papini, F. S., Dulin, D. High spatiotemporal resolution data from a custom magnetic tweezers instrument. Data in Brief. 30, 105397 (2020).
  35. Yu, Z., et al. A force calibration standard for magnetic tweezers. Review of Scientific Instruments. 85 (12), 123114 (2014).
  36. Strick, T. R., Allemand, J. -. F., Bensimon, D., Bensimon, A., Croquette, V. The elasticity of a single supercoiled DNA molecule. Science. 271 (5257), 1835-1837 (1996).
  37. Daldrop, P., Brutzer, H., Huhle, A., Kauert, D. J., Seidel, R. Extending the range for force calibration in magnetic tweezers. Biophysical Journal. 108 (10), 2550-2561 (2015).
  38. te Velthuis, A. J. W., Kerssemakers, J. W. J., Lipfert, J., Dekker, N. H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophysical Journal. 99 (4), 1292-1302 (2010).
  39. Ostrofet, E., Papini, F. S., Dulin, D. Correction-free force calibration for magnetic tweezers experiments. Scientific Reports. 8 (1), 15920 (2018).
  40. Seol, Y., Li, J., Nelson, P. C., Perkins, T. T., Betterton, M. D. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 µm. Biophysical Journal. 93 (12), 4360-4373 (2007).
  41. Burnham, D. R., Vlaminck, I. D., Henighan, T., Dekker, C. Skewed Brownian fluctuations in single-molecule magnetic tweezers. PLoS One. 9 (9), 108271 (2014).
  42. Paul, T., Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protocols. 3 (1), 101152 (2022).
  43. Lee, H. -. W., et al. Profiling of protein-protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nature Biomedical Engineering. 2 (4), 239-253 (2018).
  44. Cheezum, M. K., Walker, W. F., Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal. 81 (4), 2378-2388 (2001).
  45. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 9 (7), 724-726 (2012).
  46. Woodside, M. T., Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annual Review of Biophysics. 43 (1), 19-39 (2014).
  47. Evans, E., Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophysical Journal. 72 (4), 1541-1555 (1997).
  48. Zhang, Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Science. 26 (7), 1252-1265 (2017).
  49. Chen, H., et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophysical Journal. 100 (2), 517-523 (2011).
  50. Cho, S., et al. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. Biomaterials Advances. 139, 213028 (2022).
  51. Shon, M. J., Cohen, A. E. Nano-mechanical measurements of protein-DNA interactions with a silicon nitride pulley. Nucleic Acids Research. 44 (1), 7 (2016).
  52. Cheng, Y. Single-particle cryo-EM-How did it get here and where will it go. Science. 361 (6405), 876-880 (2018).
  53. Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596 (7873), 583-589 (2021).
  54. Neupane, K., et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 352 (6282), 239-242 (2016).
  55. Choi, H. -. K., et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science. 366 (6469), 1150-1156 (2019).
  56. Kim, C., et al. Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nature Communications. 12 (1), 3206 (2021).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

High speed Magnetic TweezersNanomechanical MeasurementsForce sensitive ElementsBiomoleculesStructural ChangesMagnetic TweezersNucleic AcidsProteinsMechanosensitive ProteinsCardiovascular DisordersMusculoskeletal DisordersMicroscope SetupCMOS CameraTranslation StageMagnet ManipulationOptical TableBead TrackingIllumination Artifacts

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone