A subscription to JoVE is required to view this content. Sign in or start your free trial.
In real-time functional magnetic resonance imaging (rtfMRI), brain activity is experimentally manipulated as an independent variable, and behavior is measured as a dependent variable. The protocol presented here focuses on the practical use of rtfMRI as a therapeutic tool for psychiatric disorders such as nicotine addiction.
It has been more than a decade since the first functional magnetic resonance imaging (fMRI)-based neurofeedback approach was successfully implemented. Since then, various studies have demonstrated that participants can learn to voluntarily control a circumscribed brain region. Consequently, real-time fMRI (rtfMRI) provided a novel opportunity to study modifications of behavior due to manipulation of brain activity. Hence, reports of rtfMRI applications to train self-regulation of brain activity and the concomitant modifications in behavioral and clinical conditions such as neurological and psychiatric disorders [e.g., schizophrenia, obsessive compulsive Disorder (OCD), stroke] have rapidly increased.
Neuroimaging studies in addiction research have shown that the anterior cingulate cortex, orbitofrontal cortex, and insular cortex are activated during the presentation of drug-associated cues. Also, activity in both left and right insular cortices have been shown to be highly correlated with drug urges when participants are exposed to craving-eliciting cues. Hence, the bilateral insula is of particular importance in researching drug urges and addiction due to its role in the representation of bodily (interoceptive) states. This study explores the use of rtfMRI neurofeedback for the reduction in blood oxygen-level dependent (BOLD) activity in bilateral insular cortices of nicotine-addicted participants. The study also tests if there are neurofeedback training-associated modifications in the implicit attitudes of participants towards nicotine-craving cues and explicit-craving behavior.
Neurofeedback is an operant conditioning procedure through which humans or animals can learn to modulate neural activity in one or more brain regions. Training typically leads to behavioral modifications1. In principle, brain signals from one or more circumscribed brain regions are transformed into sensory feedback (e.g., visual, auditory, or tactile feedback), which is provided to the participant for control of brain activity by operant conditioning or other forms of learning. In the reversal of the traditional neuroimaging paradigm, neurofeedback studies modulate brain activity as an independent variable and measure behavior as a dependent variable. Thus, neurofeedback provides a novel approach to investigating the involvement of brain regions in different cognitive functions and how hyper- or hypoactivation of those brain regions can lead to abnormal behavior.
Neurofeedback has been used with different neuroimaging modalities like functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS). EEG- and fNIRS-based neurofeedback paradigms have the advantages of higher temporal resolution, affordability, and portability2,3. However, they are characterized by low spatial resolution and an inability to access deeper brain regions. In addition, EEG has the computational complexity of the inverse problem for determining a source of neural activations from surface EEG signals4. However, with recent developments in real-time fMRI (rtfMRI), it is possible to access hemodynamic signals from all parts of the brain, with good spatial resolution (e.g., 2 mm3) and a temporal resolution of 720 ms5. Thus, fMRI overcomes the above-mentioned limitations possessed by fNIRS and EEG techniques.
Addiction to nicotine is one of the major causes of death across the world due to a number of diseases associated with smoking6. Recognized factors leading to nicotine addiction are social, environmental, psychological7, and genetic susceptibility8. On a neurobiological level, studies have shown activation in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), ventral tegmental area (VTA), ventral striatum, amygdala, hippocampus, prefrontal cortex (PFC), and insular cortex during the presentation of drug-associated cues in contrast to neutral control cues9,10,11,12,13,14. Activity in both left and right insulas are highly correlated with smoking urges when smokers viewed drug-associated cues15,16. The insula plays an important role in eliciting craving behavior17,18,19,20,21, as it is responsible for perception of the bodily state. It has been reported that smokers with lesions in their insular cortices were more likely to quit smoking than smokers with brain damage not involving the insula18.
One of the biggest challenges in existing smoking cessation methods is the high relapse rate22. More than 80% of smokers relapse within the first few months after quitting smoking23. Exposure to cues previously associated with drug use is a major reason for the high relapse rate in nicotine addiction24. This mechanism is called the incubation effect. The current protocol is developed to target the incubation effect assessed by an affective priming task. Previous studies have demonstrated that abstaining smokers have negative implicit attitudes toward smoking-related cues25,26,27,28. In the typical affective priming task, emotional priming stimuli modify the processing of an affective target so that the reaction time and accuracy of responses are changed29. In other words, if the prime and target stimuli are of the same valence, the reaction time in response to the target stimuli will be faster, and vice versa.
In the current study, it is hypothesized that downregulation of the bilateral anterior insular cortex will reduce craving, and hence, the valence of craving-inducing cues will change from negative to neutral, as attentional and associative biasing will move away from smoking-related cues30. The implicit behavior task is an affective priming task originally adapted from Czyzewska and Graham31. Based on the aforementioned hypothesis, it is anticipated to observe a decrease in reaction time in response to a combination of prime (craving eliciting picture or its neutral counterpart picture) and target words with positive valence after downregulation block as compared to baseline block. The priming task (Figure 2B) consists of a prime (i.e., a craving eliciting picture or its neutral counterpart picture32) and target word with positive or negative valence. The prime picture is presented for 200 ms, followed by a target word presented for 1 second. Stimulus onset asynchrony (SOA) is 250 ms. Participants are then instructed to judge the valence of the target word (positive or negative) and respond by pressing a button as quickly and accurately as possible.
The rtfMRI system (Figure 1) consists of the following subsystems: (1) participant, (2) signal acquisition, (3) online signal analysis, and (4) signal feedback. Signal acquisition is carried out with a 3.0T Siemens Trio whole-body scanner using an echo planar imaging (EPI) sequence33. Procedures such as image reconstruction, distortion correction, and averaging of the signal are performed on the scanner computer. Once the images are reconstructed and preprocessed, they are exported to the signal analysis subsystem. The signal analysis subsystem is implemented using the Turbo Brain Voyager (TBV)34. TBV retrieves the reconstructed images and performs data processing that includes 3D motion correction and real-time statistical analysis using the general linear model35. TBV allows the user to draw regions of interest (ROIs) over multiple voxels on the functional images and extract average BOLD values of the ROI after each repetition time (TR). The time series of the selected ROIs are then exported to the MATLAB script that calculates and presents feedback to the participant.
Visual feedback of brain activity is provided to participants in the form of a graphically animated thermometer, with its bars changing in proportion to the percent BOLD changes in the ROIs. Several studies have used intermittent feedback (feedback provided to a participant after a number of TRs of the EPI sequence) for training participants36,37. However, in the current study, it was anticipated that participants would have greater difficulty in downregulating the BOLD signal in the anterior insula with continuous feedback due to insula’s role in sensory integration and involvement in processing visual feedback information38. Hence, it was presumed that continuous feedback would result in a conflict between two processes in the insular cortex, one process that increases the signal due to external feedback, and another that decreases the signal due to neurofeedback training. Hence, in this study, we provide feedback only at the end of each downregulation block (delayed feedback). Participants are shown a text (e.g., Euro 0.87) as visual feedback (Figure 2A,C) that indicates the amount of money they earned (monetary reward). This reward is proportional to the percentage downregulation achieved in the regulation block.
RtfMRI is a novel neurotechnology that may be able to overcome problems in therapeutic approaches to addiction treatment and may provide more reliable and effective interventions for reducing relapse. The long-term objectives of the current study are three-fold: 1) to test whether nicotine addicts can learn to downregulate BOLD signals in the anterior insula during the presence of stimuli eliciting craving behavior; 2) to examine whether neurofeedback training leads to modifications in craving behavior; and 3) to explore whether changes in craving levels during neurofeedback training of downregulation of the insula persists after six months of training without any other intervention. This article provides a detailed description of the rtfMRI experimental protocol and its different components. Also presented are sample data from the study and a discussion of this method’s future challenges and potential in addition research. The protocol presented is designed to investigate whether fMRI-based neurofeedback training can be used to study reductions in brain activity in the insular cortex of cigarette smokers. In addition, the protocol is intended to study relationships between activation of the insular cortex and the craving behaviors of cigarette smokers.
The Ethics Committee of the Medical Faculty of the University of Tübingen and Pontificia Universidad Católica de Chile approved the following rtfMRI protocol.
1. Hardware set-up
2. Participant preparation outside of the scanner
3. Participant positioning
NOTE: The procedure of participant positioning on the scanner table is similar to the traditional fMRI experiment.
4. Data acquisition
5. FMRI neurofeedback
6. Control group
7. Offline analysis
Four patients were recruited based on their scores on the Fagerström Test for Nicotine Dependence (FTND)45 questionnaire for medium-level nicotine dependence (FTND score >4) and the number of cigarettes smoked every day (>15). In addition, it was ensured that the participants did not have any tattoo or metallic implants as per MRI safety measures of the institution. Five rtfMRI sessions were performed for each participant, in which the first four sessions were conducted over 2 weeks (2 sessions pe...
Results from four participants demonstrate the possibility for cigarette smokers to learn to downregulate activation in the bilateral anterior insula in the presence of a craving-eliciting cues. Changes in the implicit and explicit smoking behaviors after neurofeedback training in the sample participant may be related to learned downregulation, as the participant did not go through any other clinical or experimental interventions during the course of the experiment. Change in the participant’s implicit behavior may...
The authors have nothing to disclose.
This study was supported by Comisión Nacional de Investigación Científica y Tecnológica de Chile (Conicyt) through Fondo Nacional de Desarrollo Científico y Tecnológico, Fondecyt Postdoctoral grant (no. 3100648) Fondecyt Regular(projects no. 1171313 and no. 1171320) and CONICYT PIA/Anillo de Investigación en Ciencia y Tecnología ACT172121.
Name | Company | Catalog Number | Comments |
MATHSWORK | MATLAB version 2014a | ||
Presentation - Neurobehavioral Systems | Presentation version 18.0 | ||
Brain Innovation B.V. | Turbo Brain Voyager Version 2.6 or 3.0 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved