É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Aqui, apresentamos um protocolo para descrever um modelo de recuperação simples extracorpórea sem transfusão ou inotrópicos em um rato. Este modelo permite o estudo de longo prazo várias sequelas de órgão de bypass cardiopulmonar.
Extracorpórea (CEC) é indispensável em cirurgia cardiovascular. Apesar da dramático refinamento de técnica de CEC e dispositivos, órgãos várias complicações relacionadas à prolongada CPB ainda comprometer o resultado de cirurgias cardiovasculares e podem piorar mortalidade e morbidade pós-operatória. Modelos animais, recapitulando o uso clínico do CPB permitem o esclarecimento dos processos fisiopatológicos que ocorrem durante a CEC e facilitam estudos pré-clínicos para desenvolver estratégias de proteção contra estas complicações. Modelos do rato CPB são vantajosos por causa da sua maior relação custo-eficácia, processos experimentais convenientes, abundantes métodos de ensaio para a genética ou níveis de proteína e consistência genética. Eles podem ser usados para investigar a ativação do sistema imunológico e síntese de cytokines proinflammatory, ativação de elogio e produção de radicais livres de oxigênio. Os modelos do rato foram refinados e gradualmente tomaram o lugar dos modelos de animal-grande. Aqui, descrevemos um modelo simples de CEC sem transfusão e/ou inotrópicos em um rato. Esse modelo de recuperação permite que o estudo de longo prazo múltiplas sequelas de órgão do CPB.
Em 1953, o Dr. John H. Gibbon Jr realizou com sucesso a primeira cirurgia cardíaca usando CPB1, e posteriormente tornou-se uma modalidade essencial em cirurgia cardiovascular. Enquanto as técnicas e os dispositivos foram dramaticamente refinados, órgãos várias complicações relacionadas à CPB ainda comprometem o resultado de cirurgias cardiovasculares e podem afetar de morbidade e mortalidade pós-operatória2. Danos nos órgãos relacionados ao CPB é causado pela ativação do sistema imunológico e síntese de cytokines proinflammatory, ativação de elogio e produção de radicais livres de oxigênio2. Sua fisiopatologia, no entanto, não foi totalmente elucidada.
Modelos animais, recapitulando o uso clínico do CPB permitem o esclarecimento dos processos fisiopatológicos durante e após a CEC; Isto pode facilitar estudos pré-clínicos no desenvolvimento de estratégias para evitar estas complicações. Desde Popovic et al. relatada pela primeira vez um modelo do rato CPB em 19673, rato CPB modelos foram refinados e gradualmente tomaram o lugar dos modelos de animal grande, devido ao maior custo-efetividade, processos experimentais convenientes e uma infinidade de métodos de teste genético e níveis de proteína. Além disso, ratos puras podem ser geneticamente idênticos, reduzindo possíveis enviesamentos biológicos.
Fabre et al. primeiro estabeleceu um modelo de recuperação que permitiu o estudo de longo prazo várias sequelas de órgão de CPB4. As vantagens deste modelo de sobrevivência simples são a flexibilidade (CPB fluxo e duração), condições vitais estáveis e reprodutibilidade em inflamações sistêmicas. Modelos do rato CPB tornaram-se cruciais para a investigação de estratégias terapêuticas que visam prevenir lesões de vários órgãos durante a CEC5, e recentemente foram desenvolvidos vários modelos para simular as situações clínicas durante a CEC. De Lange et al. desenvolveu um modelo de parada cardíaca, que pode ser usado para caracterizar as respostas enzimáticas, genéticas e histológicas relacionadas com lesão miocárdica7. Peters et al. arranjado o infarto do miocárdio e reperfusão controlada usando um modelo em miniatura do CPB para analisar a disfunção do coração através da isquemia focal e reperfusão lesão8. Jungwirth et al. primeiro estabeleceu um modelo de fundo circulatória hipotérmica (DHCA), que pode elucidar a lesão de isquemia e reperfusão global por DHCA e suporta potencial neuroprotetor estratégias6. Estudos utilizando DHCA investigam a influência da hipotermia, reperfusão, e/ou acionadas por hemólise sinalização eventos9. Hipotermia profunda pode afetar a ativação e inativação de várias enzimas e vias e os mecanismos permanecem desconhecidas10. Por outro lado, modelos de parada cardíaca ou modelos de isquemia do coração devem ser usados para investigar a isquemia e reperfusão lesão de coração. Esses vários modelos CPB rato que recapitular altamente humano CEC podem revelar processos patológicos relacionados à CEC e ajudar a atenuar as complicações relacionadas à CEC.
Este protocolo demonstra um modelo simples de CEC sem transfusão ou inotrópicos em um rato. Este modelo permite o estudo de longo prazo várias sequelas de órgão do CPB.
Antes do experimento, todos os ratos devem ser dada uma semana para se aclimatar. Devem efectuar-se de todos os procedimentos cirúrgicos em animais de acordo com o guia para o cuidado e uso de animais de laboratório (www.nap.edu/catalog/5140.html) ou outras orientações éticas adequadas. Os protocolos devem ser aprovados pelo Comité de bem-estar animal na instituição apropriada antes de prosseguir. Todos os procedimentos subsequentes devem ser realizados em condições assépticas.
1. preparar o circuito de CEC
Nota: Usar equipamentos de proteção individual, incluindo luvas, óculos e um casaco limpo ou vestido descartável.
2. procedimento antes CPB
Nota: O campo cirúrgico e dispositivos devem ser desinfectados por álcool 70% ou um composto de amónio quaternário antes do uso.
3. procedimento durante a CEC
4. procedimento após a CEC
A Figura 1 mostra todo o circuito de cec. As variáveis fisiológicas neste modelo são mostradas na Figura 2e incluem a temperatura retal, significa a pressão arterial e frequência cardíaca. A Figura 3 mostra as análises de gás de sangue arterial durante a CEC, incluindo a pressão parcial de oxigênio arterial, pressão parcial de dióxido de carbono arterial, hematócrito, excesso de base, ex...
Neste modelo de CEC de rato, os soro e pulmão níveis de expressão de citocinas inflamatórias e HMGB-1, um fator de transcrição chave regulamenta as respostas inflamatórias, aumentaram dramaticamente após a CEC. Estudos clínicos anteriores mostraram que a secreção de soro de nível HMGB-1 é elevada em pacientes submetidos à cirurgia cardiovascular11, e o pico do nível de HMGB-1 soro durante a CEC foi associado com a síndrome de resposta inflamatória sistêmica mais grave e deficiên...
Todos os autores têm nada divulgar sobre suporte comercial.
Apreço é estendido para o Dr. T. Taki e Dr. M. Funamoto pelo apoio técnico.
Name | Company | Catalog Number | Comments |
Rodent Ventilator 7025 | Ugo Basile | 7025 | Ventilator |
OxiQuant B | ENVITEC | 46-00-0023 | Oxygen Sensor |
CMA 450 Temperature Controller | CMA | 8003759 | Temperature Controller |
CMA 450 Heating Pad | CMA | 8003763 | |
CMA 450 Rectal Probe | CMA | 8003761 | |
DIN(8) to Disposable BP Transducer | ADInstruments | MLAC06 | |
Disposable BP Transducer | ADInstruments | MLT0670 | |
IX-214 Data Recorder | iWorx Systems | IWX-214 | amplifier |
LabScribe software | iWorx Systems | software | |
Roller pump | Furue Science | Model RP-VT | pump |
Happy Cath | Medikit | EB 19G 4HCLs PP | 17-gauge multiorifice angiocatheter |
SURFLO ETFE I.V. Catheter | Terumo | SR-OX2419CA | 24-gauge angiocatheter |
Oxygenator | Mera | HPO-002 | |
CPB circuit | Mera | custom-made | |
Hespander fluid solution | Fresenius Kabi | 3319547A4035 | Hydroxyethyl starch |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados