É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.

Neste Artigo

  • Resumo
  • Resumo
  • Introdução
  • Protocolo
  • Resultados Representativos
  • Discussão
  • Divulgações
  • Agradecimentos
  • Materiais
  • Referências
  • Reimpressões e Permissões

Resumo

Este protocolo descreve o procedimento de edição do genoma em macrófagos derivados da medula óssea de camundongos usando complexos ribonucleoprotéicos Cas9-sgRNA montados in vitro e liberados por eletroporação.

Resumo

Macrófagos derivados da medula óssea (BMDMs) de camundongos são uma ferramenta chave para o estudo da complexa biologia de macrófagos teciduais. Como células primárias, elas modelam a fisiologia de macrófagos in vivo mais de perto do que linhagens celulares de macrófagos imortalizadas e podem ser derivadas de camundongos já portadores de alterações genéticas definidas. No entanto, a interrupção da função gênica em BMDMs permanece tecnicamente desafiadora. Aqui, fornecemos um protocolo para edição eficiente do genoma CRISPR/Cas9 em BMDMs, que permite a introdução de pequenas inserções e deleções (indels) que resultam em mutações frameshift que interrompem a função do gene. O protocolo descreve como sintetizar RNAs de guia único (sgRNA-Cas9) e formar complexos de ribonucleoproteínas (RNPs) purificados de sgRNA-Cas9 que podem ser liberados por eletroporação. Ele também fornece um método eficiente para monitorar a eficiência da edição usando o sequenciamento de rotina do Sanger e um programa de análise on-line disponível gratuitamente. O protocolo pode ser realizado em até 1 semana e não requer a construção de plasmídeos; normalmente resulta em 85% a 95% de eficiência de edição.

Introdução

Os macrófagos são células imunes inatas que desempenham papéis críticos no reparo tecidual e na imunidade 1,2. Linhagens celulares de macrófagos imortalizadas, como células RAW 264.7 de camundongos ou células THP-1 humanas, têm várias características benéficas, incluindo crescimento robusto e facilidade de ruptura gênica por meio da entrega de vetores para interferência de RNA ou CRISPR/Cas9 3,4. Entretanto, a transformação oncogênica altera drasticamente sua fisiologia, o que resulta na ativação aberrante de algumas vias e respostas silenciadas de

Protocolo

1. Projeto do sgRNA

Observação : esta etapa descreve a seleção das sequências de destino e o design dos sgRNAs. É útil projetar guias que estão no primeiro grande éxon de codificação, para que qualquer proteína traduzida seja interrompida no início do quadro de leitura aberto. Também é útil selecionar sequências de destino que estejam dentro do mesmo exon, pois isso agilizará a análise da eficiência de edição (etapa 6). Os exemplos de edição do genoma fornecidos com este protocolo usaram sgRNAs visando o primeiro exon do gene Src e o gene Cblb , bem como no locus Rosa26 não-codificante do genoma do ....

Resultados Representativos

O molde IVT é um produto de PCR de 127 pb (Figura 1B). O produto da TIV de comprimento total é um RNA de 98 nt, que migra de forma semelhante a um fragmento de DNA de fita dupla de 70 pb (Figura 1C).

Após a eletroporação, as células deveriam estar >90% viáveis, com contagem total de células de >70% do número inicial de células. O pool resultante de células mutantes deve ter um conjunto diversificado de indels, começando pe.......

Discussão

A edição do genoma usando complexos Cas9-sgRNA eletroporados permite a interrupção efetiva da função gênica em BMDMs. A eficiência de edição varia de acordo com a sequência alvo e o gene. Normalmente, quatro a cinco sgRNAs são geralmente rastreados para identificar um que é altamente ativo. Alguns loci têm menor eficiência de edição, provavelmente devido à estrutura da cromatina. Nesses casos, várias modificações podem ser feitas para aumentar a eficiência da edição. A co-entrega de dois sgRNAs at.......

Divulgações

Os autores não têm nada a revelar.

Agradecimentos

Este trabalho foi financiado pelo NIH grant 5R01AI144149. As figuras esquemáticas foram criadas com BioRender.

....

Materiais

NameCompanyCatalog NumberComments
3T3-MCSF Cell LineGift from Russell Vancenot applicable
Alt-R Cas9 Electroporation EnhancerIDT1075915
Ampure XP Reagent BeadsBeckman CoulterA63880
Calf intestinal alkaline phosphataseNEBM0525S
DNaseNEBM0303S
DPBS +Ca/Mg (0.9mM CaCl2 and 0.5mM MgCl2)Thermo Fisher14040-133
DPBS -Ca/MgThermo Fisher14190-144
ExoINEBM0293S
Fetal Calf Serum (FCS)Corning35-015-CV
Herculase DNA polymerase & bufferAgilent600677
HiScribe T7 High Yield RNA Synthesis KitNEBE2040S
LoBind conical tubes 15 mLEppendorf30122216
LoBind Eppendorf tubes 2 mLEppendorf22431102
NEBuffer r2.1NEBB6002S
Neon Transfection SystemThermo FisherMPK5000, MPP100, MPS100
Neon Transfection System 10 uL TipsThermo FisherMPK1025 or MPK1096
PBS + 1mM EDTALonzaBE02017F
Proteinase KThermo FisherEO0491
rCutSmart Buffer for ExoINEBB6004S
RibolockThermo FisherEO0384
RNA loading dyeNEBB0363S
RNeasy Mini KitQiagen74104
S. pyogenes Cas9-NLSUniversity of California Macro Labnot applicableAvailable to non-UC investigators through  https://qb3.berkeley.edu
S. pyogenes Cas9-NLS, modified 3rd GenerationIDT1081059
SAPNEBM0371S

Referências

  1. Murray, P. J., Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology. 11 (11), 723-737 (2011).
  2. Wynn, T. A., Chawla, A., Pollard, J. W. Macrophage biology in development, homeostasis, and disea....

Reimpressões e Permissões

Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE

Solicitar Permissão

Explore Mais Artigos

Este m s em JoVEEdi o 198Eletropora oComplexos Cas9 sgRNAEdi o do genoma CRISPR Cas9Muta es FrameshiftPequenas inser es e dele es indelsFun o g nicaRNAs de guia nico sgRNAComplexos de Ribonucleoprote nas RNPsEfici ncia de edi oSequenciamento de SangerPrograma de An lise

This article has been published

Video Coming Soon

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados