Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Scaffolds capable of fitting within cranio-maxillofacial (CMF) bone defects while exhibiting osteoconductivity and bioactivity are of interest. This protocol describes the preparation of a shape memory scaffold based on polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method employing a fused salt template and application of a bioactive polydopamine coating.
Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect “self-fitting.” In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described.
В настоящее время считается золотым стандартом черепно-челюстно-лицевой (CMF) костный дефект лечения, трансплантация аутологичных добываемых трансплантатов затруднено сложными процедурами прививки, донор сайте заболеваемости и ограниченная доступность 1. Особая сложность формирует и фиксации жесткого аутотрансплантата плотно в дефект, чтобы получить остеоинтеграции и предотвратить резорбцию трансплантата. Тканевая инженерия была исследована в качестве альтернативной стратегии, чтобы аутотрансплантации и синтетических заменителей кости (например, кости цемент) 2,3. Решающее значение для успеха тканевой инженерии подхода является каркас с определенным набором свойств. Во-первых, для достижения остеоинтеграции, подмости должны образовывать тесные контакты с рядом костной ткани 4. Леса должны быть остеокондуктивный, позволяя миграцию клеток, питательную диффузии и neotissue 4,5 осаждения. Такое поведение, как правило, достигается с биоразлагаемой SCAffolds демонстрируя высокую взаимосвязанную морфологию пор. Наконец, каркас должен быть биологически активным, с тем чтобы содействовать интеграции и связей с окружающей костной ткани 5.
Здесь мы приводим протокол для подготовки тканевой инженерии эшафот с этими свойствами. Важно отметить, что это эшафот проявляет способность к "само-подходят" в нерегулярных CMF дефекты, связанные с его поведением с памятью формы 6. Thermoresponsive полимеры с памятью формы (SMPS), как известно, проходят под воздействием изменения формы, чтобы нагреть 7,8. У SMP состоят из "netpoints» (то есть химических или физических сшивок), которые определяют постоянную форму и "переключение" сегменты, которые поддерживают временную форму и восстановить постоянную форму. Сегменты переключения проявляют тепловой температуру перехода (Т транс), соответствующую либо стеклования (T G) или переход (Т м) в расплав полимера. В видерезультат, бухгалтерские фирмы может быть последовательно деформированы во временную форму при Т> Т транс, фиксированной в форме временного при Т <Т транс, и восстановились до постоянной форме при Т> Т транс. Таким образом, СМП леса может достичь "само-фитинг" в дефекта CMF следующим 6. После экспозиции, чтобы нагреть раствор (Т> Т транс), многопроцессорной леса станет податливым, разрешая общем подготовленные цилиндрические эшафот, чтобы быть ручной нажата в неправильной дефекта, с восстановление формы поощрения расширения эшафот с дефектом границы. После охлаждения (T транс), подмости бы вернуться к своей относительно более жесткой состоянии, с форма устойчивость поддержания своего нового временную форму в дефекта. В этом протоколе, многопроцессорной каркас изготовлен из поликапролактон (PCL), биоразлагаемый полимер изучена для регенерации тканей и других биомедицинских приложений 9-11. Для памятью формы, тысе Т м PCL служит Т транс и колеблется в пределах 43 ° С и 60, в зависимости от молекулярной массы PCL 12. В этом протоколе, Т транс (т.е. Т м) от помост 56,6 ± 0,3 ° С 6.
Для достижения Остеокондуктивность, был разработан протокол, чтобы SMP каркасов PCL на основе с высоко взаимопроникающих пор, основанный на методе 6,13,14 растворителем литья частиц выщелачивания (SCPL). Поликапролактон диакрилат (PCL-DA), (М п = ~ 10000 г / моль) был использован для обеспечения быстрого, фотохимической сшивки и растворяли в дихлорметане (ДХМ), чтобы позволить растворителей литье по шаблону соли. После фотохимического отверждения и испарения растворителя, шаблон соль удал выщелачивания в воду. Средний размер соль регулирует размер эшафот пор. Важно отметить, что шаблон соли сливают с водой перед растворитель под давлением, чтобы достичь пор interconnectiviТай.
Биологическая был придана SMP эшафот К в формировании месте в в polydopamine покрытия на стенки пор 6. Биологическая часто вводят в каркасах включением стеклянных или стеклокерамических наполнителей 15. Тем не менее, это может привести к нежелательным хрупких механических свойств. Допамин, как было показано, чтобы сформировать клейкий тонкий слой на polydopamine различных субстратов 16-19. В этом протоколе, СМП каркас был подвергнут слабощелочной раствор (рН = 8,5) дофамина с образованием nanothick покрытие polydopamine на всех поверхностях стенки поры 6. В дополнение к повышению гидрофильности поверхности для улучшения адгезии клеток и распространение, polydopamine было показано, что биологически активный в отношении образования гидроксиапатита (ГАП) при воздействии имитаторе жидкости тела (SBF) 18,20,21. На последнем этапе, подмости покрытием подвергается термообработке при 85 ºC (Т> Т транс) WHIch приводит к уплотнению эшафот. Термообработка ранее отметил, что важное значение для поведения форма эшафот памяти, возможно, из-за PCL кристаллические домены реорганизации в большей близости 14.
Мы дополнительно описать методы, чтобы охарактеризовать собственного облегающие поведение в неправильной модели дефекта, форма поведения памяти в терминах деформации управлением циклического тепловых испытаний механического сжатия (т.е. восстановление формы и формы неподвижность), морфологию пор, а в пробирке биологической. Стратегии Портной свойства эшафот также представлены.
1. синтезирующий PCL-DA Макромер
2. Подготовка SMP строительные леса (рис 1)
3. Применение Polydopamine покрытие для SMP строительные леса (рис 1)
4. Оценка "Self-установки" Поведение
5. Тестирование Поведение памятью формы
6. Визуализация Размер пор и пор Взаимосвязанность
7. Тестирование биологической активности в пробирке
В результате PCL на основе СМП леса способен себя облегающие модели в CMF дефекта (рис 2). После кратковременной нагреваться физиологический раствор (~ 60 ° C), цилиндрический каркас смягчает позволяя каркас быть вручную нажата в течение и расширить модели дефекта. После охлаждения ?...
Этот протокол описывает подготовку polydopamine покрытием, PCL основе эшафот, чьи самостоятельно установки поведения, а также остеоиндуктивность и биологическую активность, делает его интерес в лечении нерегулярных CMF костных дефектов. Аспекты протокола может быть изменен, чтобы изменить ра...
The authors have nothing to disclose.
Авторы благодарят Texas A & M University Engineering и опытной станции (тройники) за финансовую поддержку данного исследования. Линдсей ногтей с благодарностью признает поддержку со стороны Техас & M Университет Луи Стокса Альянса для участия меньшинств (LSAMP) и Национального научного фонда (NSF) Высшей Программы исследований стипендий (GRFP). Давэй Чжан благодарит Техас & M University Диссертация стипендий.
Name | Company | Catalog Number | Comments |
Polycaprolactone-diol (Mn ~ 10,000 g/mol) | Sigma-Aldrich | 440752 | |
Dichloromethane (DCM) | Sigma-Aldrich | D65100 | Dried over 4A molecular sieves |
4-dimethylaminopyridine (DMAP) | Sigma-Aldrich | D5640 | |
Triethylamine (Et3N) | Sigma-Aldrich | T0886 | |
Acryloyl chloride | Sigma-Aldrich | A24109 | |
Ethyl acetate | Sigma-Aldrich | 319902 | |
Potassium carbonate (K2CO3) | Sigma-Aldrich | 209619 | |
Anhydrous magnesium sulfate (MgSO4) | Fisher | M65 | |
Sodium chloride (NaCl) | Sigma-Aldrich | S9888 | |
2,2-dimethoxy-2-phenyl acetophenone (DMP) | Sigma-Aldrich | 196118 | |
1-vinyl-2-pyrrolidinone (NVP) | Sigma-Aldrich | V3409 | |
Ethanol | Sigma-Aldrich | 459844 | |
Dopamine hydrochloride | Sigma-Aldrich | H8502 | |
Tris buffer (2mol/L) | Fisher | BP1759 | Used at 10 mM concentration, pH = 8.5 |
Sieve | VWR | 47729-972 | |
UV-Transilluminator (365 nm, 25 W) | UVP | 95-0426-02 | |
Centrifuge | Eppendorf | 5810 R | |
Dynamic Mechanical Analyzer (DMA) | TA Instruments | Q800 | |
High Resolution Sputter Coater | Cressington | 208HR | |
Scanning Electron Microscope (SEM) | FEI | Quanta 600 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены