Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Здесь мы описываем основанный на иммунофлуоресценции метод количественной оценки уровней одноцепочечной ДНК в клетках. Этот эффективный и воспроизводимый метод может быть использован для изучения стресса репликации, который является общей чертой при некоторых видах рака яичников. Кроме того, этот анализ совместим с автоматизированным конвейером анализа, что еще больше повышает его эффективность.
Репликационный стресс является отличительной чертой нескольких видов рака яичников. Репликационный стресс может возникать из нескольких источников, включая двухцепочечные разрывы, конфликты транскрипции-репликации или амплифицированные онкогены, что неизбежно приводит к генерации одноцепочечной ДНК (ссДНК). Таким образом, количественная оценка ssDNA дает возможность оценить уровень репликационного стресса в различных типах клеток и при различных условиях или методах лечения, повреждающих ДНК. Новые данные также свидетельствуют о том, что ssDNA может быть предиктором ответов на химиотерапевтические препараты, которые нацелены на репарацию ДНК. Здесь мы подробно описываем основанную на иммунофлуоресценции методологию количественного определения ssDNA. Эта методология включает маркировку генома аналогом тимидина с последующим обнаружением аналога хроматина на основе антител в условиях без денатурации. Участки ssDNA можно визуализировать в виде очагов под флуоресцентным микроскопом. Количество и интенсивность очагов напрямую коррелируют с уровнем ссДНК, присутствующей в ядре. Мы также описываем автоматизированный конвейер для количественной оценки сигнала ssDNA. Метод быстрый и воспроизводимый. Кроме того, простота этой методологии делает ее пригодной для высокопроизводительных приложений, таких как скрининг лекарств и генетический скрининг.
Геномная ДНК часто подвергается множественным атакам из различных эндогенных и экзогенных источников1. Частота эндогенных повреждений напрямую коррелирует с уровнями побочных продуктов метаболизма, таких как активные формы кислорода или альдегиды, которые по своей природе выше при нескольких типах рака, включая рак яичников 2,3. Крайне важно, чтобы повреждение ДНК было эффективно устранено; в противном случае он может способствовать генотоксическим поражениям и, следовательно, мутагенезу. Способность клеток восстанавливать генотоксические поражения зависит от функциональности безошибочных путей репарации ДНК и эффективной регуляции прогрессирования клеточного цикла в ответ на повреждение ДНК. Примечательно, что многие виды рака яичников имеют функционально инактивирующие мутации в р53 и, таким образом, имеют дефектную контрольную точку G1 / S, что приводит к тому, что клетки инициируют репликацию ДНК, несмотря на наличие невосстановленных геномных поражений 4,5. Степень повреждения ДНК при раке яичников еще больше усугубляется наблюдением, что более 50% серозной карциномы яичников высокой степени злокачественности (HGSOC) имеют дефекты в гомологичной рекомбинации, опосредованной BRCA1 и BRCA2, безошибочном пути репарации ДНК, и около 20% имеют амплификацию в гене CCNE1, который преждевременно выталкивает клетки G1 в S-фазу6 . Вместе высокая частота эндогенных повреждений ДНК, дефектные контрольные точки и неисправные пути восстановления экспоненциально усиливают накопление геномных поражений при раке яичников. Эти поражения могут служить препятствием для прогрессирования критических клеточных процессов, таких как репликация ДНК и транскрипция. Как обсуждается ниже, такие препятствия катализируют генерацию одноцепочечной ДНК (ssDNA) в клетках.
Двойная спираль ДНК имеет решающее значение для защиты генома от множественных мутагенных процессов, таких как спонтанная депуринация и депиримидинация, активность цитозиндезаминаз и окислительное повреждение ДНК 1,7. Напротив, ssDNA очень уязвима к этим мутационным событиям. Множественные процессы в клетках могут привести к генерации ssDNA (рис. 1). К ним относятся следующие:
(i) Остановка механизма репликации ДНК: это приводит к разъединению геликазы ДНК и полимеразы, оставляя участки ssDNA 8,9.
(ii) Остановка транскрипционного механизма: стойкая остановка РНК-полимеразы приводит к образованию трехцепочечных гибридных структур ДНК/РНК, называемых R-петлями. Образование R-петли обнажает смещенную, нетранскрибируемую ДНК в виде одной цепи10.
(iii) Резекция конца ДНК: Инициация репарации, направленной на гомологию, требует генерации 3'-ссДНК для катализа поиска гомологичной последовательности11.
(iv) D-петля: инвазия цепи во время гомологичной рекомбинации может привести к смещению нематричной комплементарной цепи, что приводит к ssDNA12.
(v) Разрывы, связанные с репликацией: Во время репликации ДНК синтез запаздывающей цепи происходит прерывистым образом, в результате чего фрагменты Окадзаки сначала генерируются, а затем лигируются. Задержка или дефект в обработке фрагментов Окадзаки также может привести к образованию ssDNA. Наконец, если репликационная вилка на ведущей цепи сталкивается с остановившимся повреждением, ДНК-полимеразой и праймазой, PRIMPOL может перепрограммировать синтез ниже по течению, оставляя разрыв ssDNA позади13,14.
Очевидно, что большинство из этих событий происходит либо тогда, когда механизм репликации ДНК сталкивается с геномными повреждениями, либо во время репарации, связанной с репликацией, что позволяет предположить, что более высокое повреждение ДНК приводит к повышению уровня ссДНК. Поскольку многие из этих событий связаны с репликацией, образование ssDNA считается маркером «репликационного стресса» в клетках15,16.
Здесь мы описываем анализ, который может быть использован для надежного количественного определения ssDNA в клетках. Простота, воспроизводимость и экономическая выгода этого подхода позволяют использовать его для оценки реакции репликации-стресса в клетках. Новые исследования показали, что уровень ssDNA также может быть предиктором ответов на химиотерапию, таких как ингибиторы ферментов PARP1/2, ATR и киназы Wee1 17,18,19,20,21. Эти ингибиторы используются в схеме лечения нескольких HGSOCs22. Таким образом, этот анализ также может быть полезным инструментом для прогнозирования химиотерапевтических реакций в клетках рака яичников.
Access restricted. Please log in or start a trial to view this content.
ПРИМЕЧАНИЕ: Клеточная линия рака яичников OVCAR3 использовалась на этих этапах, но этот протокол широко применим к множеству других клеточных линий, в том числе полученных из источников, не связанных с яичниками. Схема протокола показана на рисунке 2.
1. Покрытие ячеек
2. Пульсирующие ячейки с IdU
3. Фиксация
4. Пермеабилизация и блокировка
5. Иммуноокрашивание антителом IdU
6. Автоматизированная количественная оценка очагов IdU
ПРИМЕЧАНИЕ: Сила этого анализа заключается в способности автоматизировать анализ для быстрой и эффективной количественной оценки. Мы представляем здесь автоматизированный конвейер анализа, который можно использовать для количественной оценки очагов IdU в заданном поле изображения. Важно, чтобы все изображения в рамках данного эксперимента были сделаны с одинаковыми настройками экспозиции; В противном случае количественная оценка не будет надежной. Также может быть полезно включить неокрашенный контроль в качестве отрицательного контроля, по крайней мере, в первый раз, когда этот эксперимент проводится (рис. 5). Приведенный ниже протокол относится к NIS General Analysis Software, но те же принципы могут быть применены и к другому коммерческому программному обеспечению.
Access restricted. Please log in or start a trial to view this content.
Репрезентативные изображения и количественная оценка очагов IdU из ядер, полученных из необработанных клеток и клеток, обработанных 0,5 мМ гидроксимочевиной в течение 24 часов, показаны на рисунке 4. Оба ядра окрашены и идентифицируются в канале DAPI. Анализ этих изображений ...
Access restricted. Please log in or start a trial to view this content.
Как было упомянуто в протоколе, полезно включить несколько экспериментальных контролей, чтобы убедиться, что анализ работает. К ним относятся образец, не обработанный IdU, а также образец, обработанный первичными антителами. Оба отрицательных элемента управления должны давать клетки, о?...
Access restricted. Please log in or start a trial to view this content.
Никакой.
PV поддерживается грантом Inaugural Pedal the Cause от Онкологического центра Элвина Дж. NR поддерживается грантом NIH Cell and Molecular Biology Training T32 для Вашингтонского университета в Сент-Луисе.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3% Paraformaldehyde (PFA) | Fisher Scientific | NC0179595 | 10 g sucrose + 100 mL 10X PBS + water to make volume to 925 mL. Add 75 mL 40% Methanol free PFA, mix, and make aliquots of 50 mL before storage Storage: Store in -20 °C |
5-iodo-2'-deoxyuridine (IdU) | Sigma Aldrich | I7125-5G | MW = 354.10 g/mol.For 10 mM stock: dissolve 3.541 mg IdU to 1 mL 1 N liquid ammonia Storage: Stored in -20 °C |
Anti-BrdU antibody | BD Biosciences | 347580 | Storage: Store in 4 °C |
Anti-mouse Alexa Fluor Plus 488 secondary antibody | Thermo Scientific | A32766 | Light sensitive - keep in dark Storage: Store in 4 °C |
Bovine Serum Albumin (BSA) | Sigma Aldrich | A7906-100G | Made by adding specific mass to volume of PBS Storage: Store in 4 °C |
Circular Cover Glass | Electron Microscopy Sciences | 72230-01 | |
NIS GA3 Software | Nikon | 77010604 | |
OVCAR3 | ATCC | HTB-161 | Growth Media: RPMI supplemented with L-glutamine, 0.01 mg/mL bovine insulin; fetal bovine serum to a final concentration of 20% and 1X Pen Strep Storage: Freezing Media: growth media + 5% DMSO and stored in -80 °C |
Poly-L-Lysine solution | Sigma Aldrich | P4832-50ML | Storage: Store in 4 °C |
ProLong Diamond Antifade Mountant with DAPI | Thermo Scientific | P36962 | Storage: Store in 4 °C |
Trypsin-EDTA, 0.25% | Genesee Scientific | 25-510 | Storage: Store in 4 °C |
Water, sterile-filtered | Sigma Aldrich | W3500-6X500ML | Storage: Store in 4 °C |
Access restricted. Please log in or start a trial to view this content.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены