A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
A method for synthesis of air-sensitive titanium and vanadium anticancer agents is described, along with the evaluation of their cytotoxic activity towards human cancer cell line by the MTT Assay.
Titanium (IV) and vanadium (V) complexes are highly potent anticancer agents. A challenge in their synthesis refers to their hydrolytic instability; therefore their preparation should be conducted under an inert atmosphere. Evaluation of the anticancer activity of these complexes can be achieved by the MTT assay.
The MTT assay is a colorimetric viability assay based on enzymatic reduction of the MTT molecule to formazan when it is exposed to viable cells. The outcome of the reduction is a color change of the MTT molecule. Absorbance measurements relative to a control determine the percentage of remaining viable cancer cells following their treatment with varying concentrations of a tested compound, which is translated to the compound anticancer activity and its IC50 values. The MTT assay is widely common in cytotoxicity studies due to its accuracy, rapidity, and relative simplicity.
Herein we present a detailed protocol for the synthesis of air sensitive metal based drugs and cell viability measurements, including preparation of the cell plates, incubation of the compounds with the cells, viability measurements using the MTT assay, and determination of IC50 values.
Chemotherapy is still one of the main courses of treatments employed in the clinic for various cancer diseases, and thus vast amount of research is conducted worldwide with the aim to develop new and improved anticancer drugs. Such studies mostly begin at the chemical level, with the design and preparation of compounds, followed by biological evaluation of the cytotoxic properties in vitro. Cell viability may be assessed by various assays that provide information on cellular activity1-2.
Cisplatin is an example of a platinum complex that is widely used as a chemotherapeutic drug, which is considered an efficient treatment mainly for testicular and ovarian cancers3-4. However, its narrow activity range and severe side effects trigger studies of other potent transition metal complexes5-8. Among others, titanium (IV) and vanadium (V) complexes showed promising results of high activity and reduced toxicity9-16. Ti (IV) complexes were the first to enter clinical trials after cisplatin due to these properties; however, they have failed the trials due to formulation difficulties and hydrolytic instability. There is thus a current need to develop improved derivatives of these metal complexes that may combine high anticancer activity with water resistance15,17-21.
A challenge in the preparation of Ti (IV) and V (V) complexes refers to the hydrolytic instability of the precursor reagents; therefore, inert atmosphere should be maintained. The preparation of Ti (IV) and V (V) compounds is conducted under N2 or Ar conditions in a glove box or using Schlenk line techniques.
One common method for evaluation of the anti-cancer activity is based on the MTT (3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide) assay. This assay is a colorimetric viability assay that was presented in 1983 by Mosmann22. It is extremely well studied and characterized, and it is considered highly efficient when evaluating the effectiveness of new cytotoxic compounds due to its precision, rapidity, and its capability to be applied on variety of cell lines. This viability assay is based on the color change of the MTT molecule when it is exposed to viable cells. Measurement of the absorbance, which is proportional to the number of viable cells, and comparison to untreated controls, enables assessment of the cell growth inhibition capabilities of the compound tested.
The MTT colorimetric assay is conducted in a 96-well plate format23. The cells may require preincubation in the wells before the addition of the tested drug. The preincubation times may vary from 0-24 hr according to the cell line properties. Cells are usually exposed to the drug for 24-96 hr depending on the drug activity. MTT solution is then added to the treated cells, where the yellow MTT is reduced to purple formazan by a variety of mitochondrial and cytosolic enzymes that are operational in viable cells (Figure 1)24. The MTT molecule is not reduced by dead cells or red blood cells (metabolically inactive cells), spleen cells (resting cells) and concanavalin A-stimulated lymphocytes (activated cells)22. After 3-4 hr of incubation with MTT the formazan precipitates. The formation of the formazan begins after 0.5 hr of incubation but for optimal results it is best to expose the cells to MTT for at least 3 hr22. Consequently, the growing medium is removed and the formazan is dissolved in an organic solvent, preferably isopropanol25, although DMSO can also be used26. The elimination of the medium is crucial for achieving accurate results since phenol red, which is widely common in growth medium, and precipitating proteins can interfere with the absorbance measurement25. When the formazan solution reaches homogeneous, the absorbance of the solution is measured using a microplate reader spectrophotometer. The absorbance at 550 nm is directly proportional to the number of cells in range of 200-50,000 cells per well, and thus very small amounts of cells can be detected22. The absorbance indicates the amount of viable cells that remained after treatment with the drug, and is compared to the absorbance of control cells that were not exposed to the drug. Analysis of the results by proper software provides the IC50 (inhibition concentration; 50%) values and their statistical errors based on several repetitions of the measurement.
The MTT assay is widely common in cytotoxicity studies for screening new anticancer compounds, due to its accuracy and relative simplicity. However, when using the MTT assay, which is depended on enzymatic reaction, one must consider that various enzyme inhibitors can affect the reduction of MTT and lead to false results27. In addition, the MTT assay does not provide any information on the molecular mechanism of the cytotoxic activity of the drug2.
The complexes were prepared based on established procedures18,28 and their purity may be evaluated by NMR and elemental analysis.
The data received from the MTT assay is analyzed to evaluate the cytotoxicity of the compound18,21. First, subtraction of the blank control absorbance value from all the other values is performed. Second, the THF solvent control value is set to 100% viability, as no growth inhibiting compound was added. All other values are transformed into per...
The method described in this manuscript combines chemical synthesis with biological cell viability assay. As with any biological methods concerning viable cells, it is vital to work in a laminar hood, and maintain sterile conditions, including the use of sterile organic solvents. Also, preparation and storage of hydrolytically unstable metal based drugs should be carried out under inert conditions, for which glove box or Schlenk line techniques should be utilized.
The selection of the techniqu...
The authors declare they have no competing financial interests.
Funding was received from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no [239603]
Name | Company | Catalog Number | Comments |
Reagent/Material | |||
Fetal bovine serum (FBS) | Biological Industries | 04-007-1A | |
Hexane AR | Gadot | 830122313 | Dried using a solvent drying system |
HT-29 cell line | ATCC | HTB-38 | |
Isopropanol AR | Gadot | 830111370 | |
L-glutamine | Biological Industries | 03-020-1B | |
MTT | Sigma-Aldrich | M5655-1G | |
Penicillin/streptomycin antibiotics | Biological Industries | 03-031-1B | |
RPMI-1640 with phenol red with L-glutamine | Sigma-Aldrich | R8758 | |
RPMI without phenol red | Biological Industries | 01-103-1A | |
Tetrahydrofuran (THF) AR | Gadot | 830156391 | dried using a solvent drying system |
Ti(OiPr)4 | Sigma-Aldrich | 205273-500ML | moisture sensitive |
Trypsin/EDTA | Biological Industries | 03-052-1B | |
VO(OiPr)3 | Sigma-Aldrich | 404926-10G | moisture sensitive |
Equipment | |||
12-channel pipette 30-300 μl | Thermo Scientific | ||
12-channel pipette 5-50 μl | Finnpipette | ||
75 cm2 flask | NUNC | 156472 | |
96-well plate with lid (flat bottom) | NUNC | 167008 | |
CO2 Incubator | Binder | APT.line C150 | |
Counter chamber | Marienfeld-Superior | 650030 | |
Eppendorf vial | KARTELL | ||
Glove box | M. Braun | ||
Laminar flow hood | ADS LAMINAIRE | OPTIMALE 12 | |
Microplate reader spectrophotometer | Bio-Tek | El-800 | |
Microscope | Nikon | Eclipse TS100 | |
Pipette 20-200 μl | Finnpipette | ||
Pipette 5-50 μl | Finnpipette |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved