A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Small intestinal crypt organoids cultured ex vivo provide a tissue culture system that recapitulates growth of crypts dependent on stem cells and their niche. We established a method to assay the metabolic profile in real time in primary mouse crypt organoids. We found organoids maintain physiological properties defined by their source.
The small intestinal mucosa exhibits a repetitive architecture organized into two fundamental structures: villi, projecting into the intestinal lumen and composed of mature enterocytes, goblet cells and enteroendocrine cells; and crypts, residing proximal to the submucosa and the muscularis, harboring adult stem and progenitor cells and mature Paneth cells, as well as stromal and immune cells of the crypt microenvironment. Until the last few years, in vitro studies of small intestine was limited to cell lines derived from either benign or malignant tumors, and did not represent the physiology of normal intestinal epithelia and the influence of the microenvironment in which they reside. Here, we demonstrate a method adapted from Sato et al. (2009) for culturing primary mouse intestinal crypt organoids derived from C57BL/6 mice. In addition, we present the use of crypt organoid cultures to assay the crypt metabolic profile in real time by measurement of basal oxygen consumption, glycolytic rate, ATP production and respiratory capacity. Organoids maintain properties defined by their source and retain aspects of their metabolic adaptation reflected by oxygen consumption and extracellular acidification rates. Real time metabolic studies in this crypt organoid culture system are a powerful tool to study crypt organoid energy metabolism, and how it can be modulated by nutritional and pharmacological factors.
Colorectal cancer (CRC) is the third leading cause of cancer related deaths in the United States. Sporadic colon cancer – i.e. that arising later in life (>50 years of age) and with no clear predisposing genetic factors – accounts for ~80% of all cases, with incidence strongly influenced by long term dietary patterns1,2. These tumors exhibit a metabolic shift towards dependence on oxidative glycolysis, known as the Warburg effect, which may in part make higher concentrations of cellular building blocks and energy available (through glutaminolysis) to permit and perhaps drive high rates of tumor cell proliferation3-5. Studies of colon cancer as well as other gastrointestinal cancers including small intestine cancers provide important insight into the cause of tumor formation. Investigating the metabolic differences between normal, pro-tumorigenic and tumorigenic states of gastrointestinal organ systems may assist determination of relative risk for tumor development as well as early detection of neoplasia. Moreover, understanding bioenergetic metabolism involving mitochondrial respiration and glycolysis will provide fundamental insight into how cell physiology, aging and disease state perturbs intestinal homeostasis. Utilization of the bioenergetics assay technology for extracellular flux analysis can assess the rates of mitochondrial respiration and glycolysis simultaneously in cells growing in culture in real time6,7.
Until recently, in vitro studies of small intestine were limited to cell lines derived from either benign or malignant tumors8,9 and did not represent the physiology of normal intestinal epithelia and the influence of the microenvironment in which they reside. In 2009, Sato et al.10 introduced an ex vivo culture system to grow three-dimensional (3D) mouse intestinal epithelial organoids, or epithelial “mini-guts”, suitable for experimental, diagnostic and therapeutic investigations10,11. Moreover, crypts isolated from calorically restricted mice maintain their altered growth properties as organoids in such cultures12. Compared to transformed cell lines, crypt organoid cultures can be used to generate physiologically relevant data presenting a far better model to understand the in vivo state.
We adapted bioenergetics analysis technology to assay energy metabolism of intestinal crypt organoids. Mouse intestinal crypt organoids were cultured ex vivo to develop the crypt organoid energy metabolism studies presented. The oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) of crypt organoids were measured in the absence and presence of two different metabolic inhibitors (oligomycin, rotenone) and an ion carrier (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone). The crypt organoid metabolic response to these chemical compounds were successfully reflected through changing ECAR and OCR values.
Cellular bioenergetic studies will elucidate the reciprocal interactions between metabolic state and disease risk and phenotype in cancer, obesity, diabetes, metabolic disorders and mitochondrial diseases and help advance screening methods with direct implications for translational medicine. Here, we describe a detailed protocol to isolate small intestinal crypts and to culture crypt organoids. Moreover, we introduce a novel method to use crypt organoid cultures for metabolic assays.
This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Albert Einstein College of Medicine.
1. Crypt Isolation and Culture
2. Crypt Organoid Metabolism Assay
Crypt organoids were established from 8 month old C57BL/6 mice fed purified rodent diet American Institute of Nutrition 76A (AIN76A). Intestinal crypt organoids can be grown in culture for extended periods from a single crypt (Figure 1A, single red arrow). Organoids grow out crypt-like structures in 18-20 days in culture (Figure 1B, red arrows). Crypts were passaged every 3 weeks and organoids efficiently recovered following each passage.
Seahorse bioenergetic...
We tested the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) of crypts isolated from 8-month old mice and grown into organoids ex vivo. After measurement of the basal rate, crypt metabolism was evaluated by adding oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and rotenone, sequentially.
Basal OCR and basal ECAR were recorded from 0 - 29 min (Figure 2A and 2B). At the 29th min, oligomyci...
There are no disclosures.
This study was supported by grants RO1 CA 135561, R01 CA151494, R01 CA174432 and P3013330 from the National Institutes of Health.
We would like to thank Michele Houston, Elena Dhima and Dr. Anna Velcich for their valuable comments in developing the crypt isolation protocol.
We also thank the Diabetes Training and Research Center of the Albert Einstein College of Medicine supported by NIH P60DK20541, and Dr. Michael Brownlee and Dr. Xue-Liang Du, who direct and operate the Seahorse facility, respectively.
Name | Company | Catalog Number | Comments |
BD Matrigel Basement Membrane Matrix, GFR, Phenol Red-free, LDEV-free | BD Biosciences | 356231 | |
PBS (phosphate buffered saline), no magnesium, no calcium, pH 7.2 | Life Technologies | 20012-027 | |
Advanced DMEM/F-12 (1x) | Life Technologies | 12634-028 | |
Dulbecco′s Modified Eagle′s Medium w/o glucose, L-glutamine, phenol red, sodium pyruvate, and sodium bicarbonate | Sigma-Aldrich | D5030 | |
Phenol red sodium salt | Sigma-Aldrich | P4758 | Final Concentration 15 mg/l in DMEM (D5030) - step 2.2.2 |
Antibiotic-Antimycotic, 100x, 100 ml | Life Technologies | 15240-062 | Final concentration 1x or 2x |
Penicilin-Streptomycin, liquid | Life Technologies | 15140-122 | Final concentration 1x |
Gibco® GlutaMAX™ supplement | Life Technologies | 35050061 | Final concentration 1x |
Gibco® HEPES (N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid), 1 M | Life Technologies | 15630-080 | Final concentration 10 mM |
N-acetyl-L-cysteine, 25 g | Sigma-Aldrich | A9165-25G | Final concentration 1 mM |
100x N-2 supplement, liquid | Invitrogen | 17502-048 | Final concentration 1x |
50x B-27® supplement minus Vitamin A, liquid | Invitrogen | 12587-010 | Final concentration 1x |
Recombinant Mouse R-Spondin 1, CF, 50 μg | R&D Systems | 3474-RS-050 | Final concentration 500 ng/ml |
Recombinant Murine EGF, 100 μg | Peprotech | 315-09 | Final concentration 50 ng/ml |
Recombinant Murine Noggin, 20 μg | Peprotech | 250-38 | Final concentration 100 ng/ml |
Gibco® L-glutamine, 200 mM | Life Technologies | 25030-081 | Final concentration 2 mM |
Gibco® glucose powder | Life Technologies | 15023-021 | Final concentration 5 mM |
Ambion® 0.5 M EDTA (ethylenediaminetetraacetic acid), pH 8.0 | Life Technologies | AM9260G | Final concentration 3 mM for step 1.1.5; 2 mM for step 1.1.8 |
[header] | |||
DTT (dithiothreitol), 1M | Life Technologies | P2325 | Final concentration 3 mM |
Albumin from bovine serum (BSA) | Sigma-Aldrich | A2058 | 0.1% in PBS |
Fetal Bovine Serum (FBS) | Life Technologies | 16000-044 | 1% in PBS |
Recovery™ Cell Culture Freezing Medium | Life Technologies | 12648-010 | |
ROCK inhibitor (Y-27632) | Sigma-Aldrich | Y0503 | Final concentration 10 μM |
Oligomycin | Sigma-Aldrich | O4876 | Final concentration 1 μM |
Carbonyl cyanide-p-trifluoro-methoxy-phenyl-hydrazone (FCCP) | Sigma-Aldrich | C2920 | Final concentration 1 μM |
Rotenone | Sigma-Aldrich | R8875 | Final concentration 1 μM |
Sodium hydroxide | Sigma-Aldrich | 221465 | Final concentration 0.1 N in PBS |
XF24 Extracellular Flux Analyzer (XF Analyzer) | Seahorse Bioscience |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved