A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The main adherent cell types derived from human muscle are myogenic cells and fibroblasts. Here, cell populations are enriched using magnetic-activated cell sorting based on the CD56 antigen. Subsequent immunolabelling with specific antibodies and use of image analysis techniques allows quantification of cytoplasmic and nuclear characteristics in individual cells.
The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package.
The repair and regeneration of skeletal muscle requires the action of satellite cells1, the myogenic stem cells2,3. In vivo these cells exist in a reversibly quiescent state located between the sarcolemma and basal lamina of every myofibre, but become activated to proliferate, fuse and differentiate as muscle tissue is damaged, repaired and regenerated3. Satellite cells can be isolated from young and elderly human muscle biopsy samples using enzymatic digestion4 and their myogenic properties can subsequently be studied in primary culture5. The efficiency of this isolation process in regard to both yield and purity of cell population depends on the methods used and can vary from sample to sample. The two main adherent cell types obtained from enzymatic digestion are the satellite cells (now termed myogenic cells or muscle precursor cells), identified initially as CD56+/desmin cells, and muscle-derived fibroblasts, identified as CD56– and TE7+ cells5. Fibroblasts have a rapid proliferative rate and do not undergo irreversible growth arrest and terminal differentiation upon cell-cell contact like myogenic cells; thus in mixed populations, fibroblasts may overrun myogenic cells to dominate the culture.
Fibroblasts have often been viewed as an irritation for muscle biologists, however, there is now a growing interest in fibroblasts as cells worthy of study in their own right, particularly as they have been shown to have a cooperative role with myogenic cells during muscle repair6. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of both cell types in culture. Fluorescence-activated cell sorting (FACS) is a method by which cells can be sorted for further study and/or counted and analyzed. FACS has been shown to reliably enrich human myogenic cells, but the yield of cells for subsequent culture has thus far not been high7. Given the limited replication potential of somatic cells such as satellite cell-derived myogenic cells and the very poor proliferation and differentiation associated with senescence4, more gentle approaches are required. Single muscle fiber cultures offer another, less aggressive, means of obtaining murine satellite cells still resident in their sublaminal niche and after their activation in culture8,9. However, this is often not possible from human muscle biopsy material (because fibres can rarely be obtained from tendon to tendon) meaning that this technique may not be accessible to many research labs interested in studying human muscle-derived cells. Moreover, the single fiber technique only provides very limited cell numbers.
Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by two successive rounds of magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue) for experiments in culture. CD56 is considered the gold standard surface marker for the identification of human satellite cells in situ10 and in vitro11 and provides the ideal surface marker candidate for bead attachment. In this approach CD56 antibodies conjugated to iron oxide and polysaccharide-containing superparamagnetic beads are bound to cells and passed through a high gradient magnetic cell separation column placed in a strong magnetic field12,13. The separation columns are filled with a matrix of ferromagnetic steel wool or iron spheres which serve to focus magnetic field lines towards their surface generating strong magnetic field gradients (~4tesla)14. In these columns even slightly magnetic cells are attracted and adsorbed to their surface14. Unbound (CD56‒) cells pass through the column whereas CD56+ cells labeled with magnetic microbeads are retained until removal from the magnetic field12,15.
Cell suspensions from any stage of the sorting process can be plated at the desired density for further experimentation. Following a given intervention the cellular constituents can be identified using immunocytochemistry, imaged using wide-field or confocal fluorescence microscopy and analyzed quantitatively using an image analysis approach that allows rapid objective measurement of all labeled cells in any given image. In our laboratory we have used this double immunomagnetic sorting approach followed by image analysis16 to demonstrate that CD56– human fibroblasts readily transdifferentiate into adipocytes, whilst myogenic cells of satellite origin are highly resistant to this adipogenic conversion5.
NOTE: For the studies performed in our lab all subjects gave their written, informed consent to participate and all experiments were performed with UK National Health Service Ethics Committee approval (London Research Ethics Committee; reference: 10/H0718/10) and in accordance with the Human Tissue Act and Declaration of Helsinki.
1. Initial Preparation Prior to Muscle Biopsy (15 min)
2. Muscle Biopsy Procedure (45 min-1 hr)
3. Isolating Muscle-derived Precursor Cells (1 hr, 30 min)
4. Immunomagnetic Bead Sorting of Cells Based on CD56 Expression (1.5 hr)
5. Sorting of Human Muscle-derived Fibroblasts Immediately After Isolation.
6. Immunocytochemical Staining (1 day and overnight).
7. Oil Red O Staining in Combination with Immunofluorescent Staining of Cells (2 hr)
8. Obtaining Micrographs from Fluorescence Microscopy for Subsequent Analysis
NOTE: Ensure that slides to be compared quantitatively are stained with the same solutions, photographed at identical conditions (e.g., exposure, camera and acquisition settings etc.) and captured in the same microscopy session. All post-acquisition formatting should also be identical and be in strict accordance with suggested guidelines for digital images24.
9. Performing Measurements of Fluorescently Labeled Nuclear Transcription Factors Using Image Processing and Analysis Software (5 min per field of view).
Purified myogenic cells and fibroblasts can be cultured in adipogenic differentiation medium for three days followed by adipogenic nutrition medium from anywhere between 7-30 days to assess their potential for adipogenesis. Using the purified cell populations, Oil Red O staining in combination with immunostaining for adipogenic and myogenic lineage markers showed that only the fibroblast fraction was capable of adipogenic differentiation (Figure 2). The massive accumulation of fat by the fibroblasts is v...
We have described an immunomagentic sorting procedure for the selective enrichment of human muscle-derived precursors from small samples of muscle biopsy material. This technique has been invaluable in our lab for overcoming the loss of human muscle-derived cultures to fibroblasts, but also for understanding the unique behavior of distinct populations of muscle-derived progenitors. Once purified myogenic cells can be investigated for changes in protein and/or gene expression, or used for downstream experiments.
The authors declare that they have no competing financial interests.
The authors wish to thank Carl Hobbs and Lindsey Majoram for their technical assistance, and Professor Pat Doherty for use of microscopy facilities. Dr. Agley was supported by a studentship from King’s College London. Funding from the Spurrell Trust is also acknowledged.
Name | Company | Catalog Number | Comments |
Collagenase D | Roche | 11088866001 | |
Dispase II | Sigma | D4693-1G | Must be filter sterilized before use |
Trypsin/EDTA | (Gibco) Invitrogen | 15400-054 | |
100 μm cell strainer | BD Biosciences | 352360 | |
Collagen solution ( 3 mg/ml in 0.1% acetic acid) | Sigma, Dorset, UK | C8919 | |
Minisart SRP15 syringe filter (0.2 μm) | Sartorius | 17573ACK | Polytetrafluorethylene (PTFE) membrane |
CD56 human Microbeads | Miltenyi Biotech | 130-050-401 | Be aware of the limited shelf life of microbeads |
Anti- fibroblast Microbeads, human | Miltenyi Biotech | 130-050-601 | |
40 μm Pre-separation filters | Miltenyi Biotech | 130-041-407 | |
Large Cell Collumns | Miltenyi Biotech | 130-042-202 | These columns come with a flow resistor. Use of the flow resistor is not necessary to obtain the high myogenic purities described here. |
LS columns | Miltenyi Biotech | 130-042-401 | |
MiniMacs Seperator | Miltenyi Biotech | 130-042-102 | This separator fits the large cell column but not the LS column. |
MidiMACS | Miltenyi Biotech | 130-042-302 | |
MACS multistand | Miltenyi Biotech | 130-042-303 | |
BSA | Sigma | Must be filter sterilized before use | |
Oil Red O | Sigma | O0625 | |
Triethyl phosphate | Sigma | 538728 | |
Whatman Paper | Sigma | Z241121-1PAK | No. 42, Ashless. To prepare the filter fold the circular filter paper to make a semi circle, then fold the semi-circle in half again to form a cone shape. Fit the cone into a funnel for filtering. |
ProLong Gold Antifade Reagent | Molecular Probes, Invitrogen | P36930 | This can be purchased with or without DAPI and does not quench initial fluorescence. |
AxioVision | Carl Zeiss | Contact Zeiss | |
Adobe Photoshop CS5 Extended | Adobe (purchased from Pugh Computers) | ADPH16982* |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved