A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a means to quickly and simply measure the lung diffusing capacity in mice and show that it is sufficiently sensitive to phenotype changes in multiple common lung pathologies. This metric thus brings direct translational relevance to the mouse models, since diffusing capacity is also easily measured in humans.
The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.
The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underly such pathologies, phenotypic methods are needed that can quantify the it the pathologic changes. Although there are many mouse studies where ventilation mechanics are measured, these measurements are generally unrelated to the standard assessments of pulmonary function normally done in humans. This is unfortunate, since the ability to perform equivalent measurements in mice and human subjects may facilitate the translation of results in mouse models to human disease.
One of the most common and easily made measurements in human subjects is the diffusing capacity for carbon monoxide (DLCO)1,2, but this measurement has only rarely been done in mouse models. In those studies where it has been reported3-7, there have been no follow-up studies, in part because the procedures are often cumbersome or may require complex equipment. Another approach is to use a CO rebreathing method in a steady state system, which has the advantage of being able to measure CO diffusion in conscious mice. However this method is very cumbersome, and results can vary with the level of the mouse’s ventilation as well as O2 and CO2 concentrations8,9. These difficulties seem to have precluded routine use of diffusing capacity to detect lung pathologies in mice, despite its several advantages.
To circumvent the problems with measurement of diffusing capacity in mice, details of a simple means to measure it in mice have been recently reported10. The procedure eliminates the difficult problem of sampling uncontaminated alveolar gas by quickly sampling a volume equal to the entire inspired gas. This procedure results in a very reproducible measurement, termed the diffusion factor for carbon monoxide (DFCO), that is sensitive to a host of pathologic changes in the lung phenotype. The DFCO is thus calculated as 1 – (CO9 / COc) / (Ne9 / Nec), where the c and 9 subscripts refer to concentrations of the calibration gases injected and the gases removed after a 9 sec breath hold time, respectively. DFCO is a dimensionless variable, which varies between 0 and 1, with 1 reflecting complete uptake of all CO, and 0 reflecting no uptake of CO.
In this presentation we show how to make this diffusing capacity measurement, and how it can be used to document changes in nearly all of the existing mouse lung disease models, including emphysema, fibrosis, acute lung injury, and viral and fungal infections.
Access restricted. Please log in or start a trial to view this content.
NOTE: All animal protocols were approved by the Johns Hopkins University Animal Care and Use Committee.
1. Animal Preparation
2. Measurement of Diffusion Factor for Carbon Monoxide (DFCO)
Access restricted. Please log in or start a trial to view this content.
Figure 1 shows the DFCO measurements from the adult mice in groups A, B, C, D, E, and F. There were significant decreases with both the Aspergillus and influenza infections, as well as significant decreases in the fibrotic, emphysematous, and acute lung injury models. Figure 2 shows the Group G developmental changes in DFCO over time as the mice age from 2-6 weeks. There was a slight but significant increase with lung development over this time course. The effect of using a smaller infla...
Access restricted. Please log in or start a trial to view this content.
In the present work, we defined a new metric to quantify the gas exchanging ability of the mouse lung. This metric is analogous to the diffusing capacity, a common clinical measurement that measures the primary function of the lung, that is, its ability to exchange gas. The diffusing capacity is the only lung functional measurement that can be easily and quickly done in both mice and humans. For the detection of lung disease in mice, a major objective is to quantify changes in lung function between control and experiment...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest, and nothing to disclose.
This work was supported by NIH HL-10342
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Gas Chromatograph | Inficon | Micro GC Model 3000A | Agilent makes a comparable model |
18 G Luer stub needle | Becton Dickenson | Several other possible vendors | |
3 ml plastic syringe | Becton Dickenson | Several other possible vendors | |
Polypropylene gas sample bags | SKC | 1 or 2 L capacity works well | Other gas tight bags will work well |
Gas tank, 0.3% Ne, 0.3% CO, balance air; (size ME) | Airgas, Inc | Z04 NI785ME3012 | This is the standard mixture used for DLCO in humans |
25 TCID50/mouse of influenza virus A/PR8 diluted in phosphate buffered saline. | |||
Porcine pancreatic elastase | Elastin Products, Owensville, MO | 5.4 U | |
Bleomycin | APP Pharmaceuticals, Schaumburg, IL | 0.25 U | |
Escherichia coli LPS | Sigma L2880 | 3 μg/g body weight; O55:B5 | |
Aspergillus fumigatus (isolate Af293) conidia were collected from mature colonies grown on potato dextrose agar. |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved