A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this procedure is to demonstrate the reproducibility and adaptability of using a microtiter plate format for microalgal screening. This rapid screen combines WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry to measure photosynthetic yield as an indicator of Photosystem II (PSII) health with small volume bacterial-algal co-cultures.
Conventional methods for experimental manipulation of microalgae have employed large volumes of culture (20 ml to 5 L), so that the culture can be subsampled throughout the experiment1–7. Subsampling of large volumes can be problematic for several reasons: 1) it causes variation in the total volume and the surface area:volume ratio of the culture during the experiment; 2) pseudo-replication (i.e., replicate samples from the same treatment flask8) is often employed rather than true replicates (i.e., sampling from replicate treatments); 3) the duration of the experiment is limited by the total volume; and 4) axenic cultures or the usual bacterial microbiota are difficult to maintain during long-term experiments as contamination commonly occurs during subsampling.
The use of microtiter plates enables 1 ml culture volumes to be used for each replicate, with up to 48 separate treatments within a 12.65 x 8.5 x 2.2 cm plate, thereby decreasing the experimental volume and allowing for extensive replication without subsampling any treatment. Additionally, this technique can be modified to fit a variety of experimental formats including: bacterial-algal co-cultures, algal physiology tests, and toxin screening9–11. Individual wells with an alga, bacterium and/or co-cultures can be sampled for numerous laboratory procedures including, but not limited to: WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry, microscopy, bacterial colony forming unit (cfu) counts and flow cytometry. The combination of the microtiter plate format and WATER-PAM fluorometry allows for multiple rapid measurements of photochemical yield and other photochemical parameters with low variability between samples, high reproducibility and avoids the many pitfalls of subsampling a carboy or conical flask over the course of an experiment.
Phytoplankton physiology has traditionally been studied in meso-scale experiments ranging from 20 ml in conical flasks to 5 L in carboys1–7. This experimental scale requires subsampling for experimental monitoring, as sacrificing replicate samples for each time point creates an unmanageable experimental setup.
The ability to increase the number of independent experiments while using the same diurnal incubator space by miniaturizing the experimental volume for algal physiology experiments will reduce or eliminate the limitations of subsampling and pseudo-replication from large volumes. A microtiter plate format has been developed for algal bioassays using a 1 ml culture volume for experimentally manipulating algae in variable conditions. This small experimental volume allows for the number of replicates to be increased, increases experimental reproducibility due to a decreased variability between replicate samples and experiments, and allows true replication while maintaining experimental controls (i.e., axenic algal cultures) for 140 days (Figure 2)12.
This microtiter plate format is easily adapted for a variety of experimental questions, such as: does a bacterium have a symbiotic, neutral or pathogenic interaction with its algal host? Is the addition of a compound stimulating or toxic to an alga? These and other questions can be addressed in a rapid high-throughput manner using this new format9–11.
A 48-well microtiter culture plate allows each 1 ml well to be an independent experimental setup that is sampled at a single time-point. Various parameters can be sampled from this 1 ml volume including, but not limited to: chlorophyll fluorescence and photochemical parameters using WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry (see Materials and Equipment table)13. WATER-PAM fluorometry is a rapid and non-invasive technique that can be used to monitor experiments performed with algae13. It allows measurement of photosynthetic efficiency and PSII health from a small culture volume (150 - 300 μl of culture diluted in medium to a 2 - 4 ml volume for WATER-PAM)14,15. In addition to WATER-PAM fluorometry, this setup can be used to measure a variety of other parameters including, but not limited to: microscopy to visualize the bacteria attached to algal cells and changes in the algal cell morphology; bacterial colony forming unit (cfu) counts; and flow cytometry for algal cell counts and identifying subpopulations.
1. Calculations for Experimental Setup
2. Growing Algal Cells for Experimental Setup
3. Preparing Bacterial Cells for Inoculation
4. Preparing Bacteria for Experimental Setup
5. Preparing Algae for Experimental Setup
6. Preparing Experimental Co-culture
7. Setting up Microtiter Plates
Figure 1. Schematic representation of sample placement in a 48-well microtiter plate. Wells are to be filled as follows: columns 1 and 6, wells A through F () are filled with 1 ml 1x PBS (or other sterile solution/media). Rows A and F, wells 2 - 8 (
) are filled with 1 ml bacterial control; rows B and E wells 2 - 8 (
) are filled with 1 ml algal control; rows C and D, wells 2 - 8 (
) are filled with 1 ml co-culture. The plate is divided into 4 quadrants (A2, A5, D2, and D5) these quadrants are each specific sampling days 1 - 4, this should be randomized throughout plates and labeled accordingly. Within each day we advise randomizing the algal control (
) and co-culture (
) wells using a random number generator. Label the lid over the 1x PBS and/or bacterial control wells to prevent shading of algal cultures.
8. Taking PAM Fluorometry Readings from Stock Samples
9. Taking PAM Fluorometry Readings from Microtiter Plates
10. Sample Experiment
The sample experiment is a 10 day co-culture of a bacterium (Phaeobacter gallaeciensis BS107) and a microalga (Emiliania huxleyi strain (CCMP3266)). It includes an algal control, bacterial control, and a bacterial-algal experimental co-culture.
11. Other Parameters of Interest
WATER-PAM fluorometry readings.
WATER-Pulse-Amplitude-Modulated (PAM) fluorometry is a quick and efficient method to determine the fluorescence (a proxy for chlorophyll content) and photosynthetic yield (PSII health) of algal cultures. The PAM WinControl software generates a spreadsheet of raw data values for (the following are the basic parameters for dark adapted algal samples):
F0 = fluorescence of dark-adapted cells
Algal growth in a miniaturized format.
The miniaturization of algal cultures to a 1 ml culture volume in a microtiter plate allows for the replication within an experiment to be increased. It is important to ensure the alga is healthy throughout an experiment; perform a growth curve (Figure 2), using the microtiter plate format to assess various algal media, to ensure the nutritional requirements of the alga are met. Additionally, it may be important to optimize the diurnal cycle...
The authors have nothing to disclose.
This work was supported by Natural Sciences and Engineering Research Council of Canada (grant 402105), Canadian Foundation for Innovation (grant 129087) and Alberta Education and Training (grant AAETRCP-12-026-SEG) to RJC.
Name | Company | Catalog Number | Comments |
10 cu. ft. Diurnal incubator (6012-1) | Caron Corporate | 112310-6012-1-11 | www.caronproducts.com |
Nunc EasYFlask 25 cm2, Vent/Close Cap, 7 ml working volume, 200/cs | Thermo Fisher Scientific | N156340 | www.fishersci.ca |
Multiwell TC Plates – 48-well | BD Biosciences Discovery Labware | 353078 | www.bdbiosciences.com |
P1000 Gilson The Pipetting Standard—Gilson's Pipetman | Mandel Scientific Company Inc. | GF-F123602 | www.mandel.ca |
P10mL Gilson The Pipetting Standard—Gilson's Pipetman | Mandel Scientific Company Inc. | GF-F161201 | www.mandel.ca |
Wide Orifice Tips nonsterile [100–1,250 µl] | VWR International | 89079-468 | www.ca.vwr.com |
Ultrafine Tips nonsterile [100–1,250 µl] | VWR International | 89079-470 | www.ca.vwr.com |
Finntip 10 ml [Vol: 1 - 10 ml] | Thermo Fisher Scientific | 9402151 | www.fishersci.ca |
WATER-Pulse Amplitude Modulation (Water-ED) | Heinz Walz GmbH, Effeltrich, Germany | EDEE0232 | www.walz.com |
15 mm diameter quartz glass cuvette (WATER-K) | Caron Corporate | www.caronproducts.com | |
Sodium chloride (crystalline/certified ACS), Fisher Chemical | Thermo Fisher Scientific | Thermo Fisher Scientific | www.fishersci.ca |
BD Difco Marine Broth 2216 | BD Biosciences Discovery Labware | BD Biosciences Discovery Labware | www.bdbiosciences.com |
BD Bacto Agar | BD Biosciences Discovery Labware | BD Biosciences Discovery Labware | www.bdbiosciences.com |
L1 Medium Kit, 50 L | NCMA [National Center for Marine Algae and Microbiota | NCMA [National Center for Marine Algae and Microbiota | www.ncma.bigelow.org |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved