In this work, we present a technique for the rapid fabrication of living vascular tissues by direct culturing of collagen, smooth muscle cells and endothelial cells. In addition, a new protocol for the mechanical characterization of engineered vascular tissues is described.
Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled.
The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The “static bioreactor” provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.
Vascular tissue engineering envisions different strategies aimed at the fabrication of engineered vessels, including grafts based on synthetic scaffolds, cell sheet-based tissue-engineered blood vessels (TEBVs), and extracellular matrix (ECM) components-based TEBVs. Among these approaches, synthetic polymers exhibit good mechanical properties, but share a common drawback as they lack bioactivity1. The cell sheet-based method allows the production of engineered vascular substitutes with high mechanical properties, but the time required to produce such grafts is approximately 28 weeks2. Natural biopolymers of the ECM, such as collagen, elastin, fibrin3or a combination thereof, remain the gold standard materials for tissue engineering scaffolds. This is primarily for the reason that these materials possess a generally good biocompatibility while being able to induce functional cellular responses4-5. Among these biopolymers, type I collagen is one of the most abundant and predominant load-bearing protein of the ECM in many tissues such as skin, blood vessels and tendons. Extensive work has been conducted on the mechanical properties of collagen6–8, but there have been only a few studies on cellular remodeling of collagen gels during static maturation. Cellular remodeling refers to the structural modifications of the collagen matrix induced by cells that could affect the stability of the collagen fibrils network9. As a natural scaffold, relatively large quantities of type I collagen can be isolated, sterilized and stored from different sources such as rat-tail tendons10. Understanding cellular interactions with collagen and the related overall mechanical behaviors of the cellularized collagen scaffolds (constructs) is an essential step for the construction of tissues. Collagen-based TEBVs can be processed by directly mixing cells with collagen during gel preparation and further molded into specific shapes such as tubular and planar11. Vascular cells inside the gels proliferate and remodel type I collagen12. Thus, this method bypasses the need for specific macroporosity that represents one of the significant issues in the development of scaffolds for tissue engineering applications. However, the major drawbacks of collagen gels are their low mechanical properties compared to synthetic materials13.
In this study, a viable tissue with homogenous distribution of cells was engineered by direct mixing of collagen with cells in a one-step process. “Static bioreactors” were used for the 1 or 2 weeks of static maturation of the cellularized collagen gels (without applied external dynamic mechanical constraints). During the culture, collagen matrix remodeling occurred, thus providing structural reinforcement to the constructs. Furthermore, these constructs were ready to be transferred to a rotating-wall bioreactor and a homogenous endothelium was achieved. In addition, in this work a specific mechanical testing protocol is also proposed to provide an appropriate novel approach in characterizing the mechanical properties of tubular soft tissues.
In summary, this work presents a method for the in vitro rapid fabrication and maturation of vascular tissues that are strong enough to be handled not only for biological and mechanical characterizations, but also for further mechanical conditioning in a dynamic bioreactor, which is considered a crucial step in the regeneration of tissues.
1. Fabrication and Assembly of the Static Bioreactor
2. Engineering Smooth Muscle Cell Collagen Gel-based Constructs and Static Maturation
3. Mechanical Characterization of the Constructs in the Longitudinal and Circumferential Directions
4. Luminal Endothelialization of Constructs
Note: After following the harvesting protocol (section 2.4), the constructs withstand handling to be mounted in the rotating-wall bioreactor for the further endothelialization.
This work describes the fabrication of engineered tubular collagen-based constructs containing vascular cells. Already after 1 hr of early gelation, cells-and-collagen mixture was directly assembled in a 3D tubular geometry, with the external diameter equal to the diameter of the corresponding mold (around 14 mm). All along static maturation, measurements revealed the rapid reduction of the external diameter of the tubular cellularized structures, as shown in Table 1. The diameter of the cellularized collagen gels shrunk of about 60% of its initial value after 1 day of static culture, and of almost 85% within 7 days (Supplemental Video 2). SMCs within the constructs are responsible for the observed shrinking and the related mechanical reinforcement, as this phenomenon does not occur in non-cellularized collagen scaffolds. Note that no gradient of any type (thermal, biochemical, mechanical, or others) was applied. The cells-driven compaction resulted in a material with greater collagen density that could be handled and subdued to mechanical solicitations (Supplemental Videos 3 and 4).
To relate the cells-driven remodeling to the overall mechanical and viscoelastic properties, fatigue tests were performed on the constructs (Supplemental Videos 5 and 6). These tests consisted in cycling the constructs (30 times) at different constant strains (10%, 20%, and 30% of initial gauge length) and to record the stress as the response of the constructs to the mechanical solicitation over time. The representative results for one construct are shown in Figure 9. The construct withstood higher stresses in the longitudinal direction (75 kPa) than in the circumferential direction (16 kPa) when subjected to the same strain range (30% strain). Meanwhile, at each cycle, the stress peak value reached for the targeted maximum strain decreased over time. This behavior is typical of the high viscoelastic properties exhibited by these collagen-based constructs.
The biological activity of the cellularized constructs was assessed during static maturation. Hence, metabolic activity of SMCs was evaluated by measuring the glucose consumption and lactate production during static culture. Culture medium was sampled every 2 days and glucose and lactate concentrations were measured using a blood gas analyzer. The constant increase in glucose consumption and lactate production combined to the important shrinking of the constructs, attest the SMCs activity all along static culture (Figure 10).
The increased mechanical stability due to the cell-driven remodeling allowed the manipulation of the constructs and the subsequent endothelialization process. Masson’s trichrome staining performed on the endothelialized constructs showed a highly homogenous endothelium. SMCs exhibited a spindle-like shaped morphology and appeared homogenously dispersed through the wall, while HUVECs appeared well spread in the luminal side (Figure 11).
Figure 1: Components of the static bioreactor. The static bioreactor consisted of a modified 50 ml centrifuge tube (A) and a mandrel-equipped cap (B). The tube served as medium reservoir, and was equipped with a port for a 0.22 µm filter, for the gas exchange, and a septum, for the medium sampling and changing. A mandrel present in the ventilated cap allowed the fabrication of constructs in tubular shape. The gauze-grips (C) were designed and fabricated to support the gelation of the constructs over the mandrel. Moreover, these grips allowed the constructs to be handled after the static maturation and to be fixed to the mechanical apparatus. The external diameter of the mandrel was 4.7 mm.
Figure 2: Assembling of the static bioreactor. Assembling phases of the bioreactor before the sterilization. The gauze-grips were mounted on the mandrel (A) at a fixed distance. A mold was inserted (B) and tightly fixed to the silicone stopper (C). The external diameter of the mandrel was 4.7 mm.
Figure 3: Fabrication of the constructs in sterile conditions. The cells and collagen mixture was poured into the housing-mold complex (A), and let gel for 1 hr at room temperature (B). Afterwards, the mold was removed (C), the static bioreactor was assembled (D) and transferred inside a reservoir for the static maturation of the construct in incubator (T = 37 °C, 5% CO2, 100% humidity). The external diameter of the mandrel was 4.7 mm.
Figure 4: Measurement of the thickness/external diameter of the constructs. A laser scanning interferometer was used to perform the measurement of the external diameters of the constructs. The construct was placed into the pathway of the laser beam and generated a shadow. The width of the shadow, corresponding to the external diameter of the construct, was then measured and displayed on the screen.
Figure 5: Morphological appearance of the harvested construct. (A) Right after gelation and (B) after cells-driven remodeling during static maturation for 2 weeks.
Figure 6: Experimental set-up for mechanical characterizations. It consisted of the micromechanical tester equipped with a 5 or 10 N load cell and a bath containing PBS at 37 °C to keep the samples in pseudo-physiological conditions.
Figure 7: Sample preparation for mechanical characterizations. Sample harvesting (A) and preparation (B) for fatigue tests performed in the longitudinal and the circumferential directions (C). The external diameter of the mandrel was 4.7 mm.
Figure 8: Rotating-wall bioreactor. (A) The tubular constructs were assembled in the center of the reservoir with the help of c-shaped silicone support. Both of the extremities of the construct were closed to avoid any leakage of the HUVECs solution. (B) The constructs were cultured in incubator (T = 37 °C, 5% CO2, 100% humidity) in rotation at 4.02 x 10-5 g force for 2 days.
Figure 9: Mechanical characterizations. Results of fatigue tests performed on constructs in longitudinal (A) and circumferential (B) directions after cell-driven remodeling. Please click here to view a larger version of this figure.
Figure 10: Metabolic activity of SMCs within the collagen gels. Measurements of glucose consumption rate and lactate production rate were performed with the blood gas analyzer every 2 days, after the culture medium changing. Fresh culture medium was used as a baseline level for the glucose and lactate concentrations measurements.
Figure 11: Lumen endothelialization. Histological images of the radial cross-sections of tubular constructs. Masson’s Trichome staining of tubular constructs cultured statically for 1 week (A) and 2 weeks (B). H & E staining of a tubular construct (C).
Time | Thickness (mm) | Compaction (%) |
0 hr | 4.83 ± 0.02 | 0 ± 0 |
2 hr | 4.26 ± 0.02 | 12 ± 0 |
4 hr | 4.21 ± 0.03 | 13 ± 1 |
6 hr | 4.06 ± 0.10 | 16 ± 2 |
12 hr | 3.16 ± 0.07 | 35 ± 1 |
1 day | 2.08 ± 0.11 | 57 ± 2 |
1 week | 0.68 ± 0.07 | 86 ± 1 |
2 weeks | 0.36 ± 0.00 | 93 ± 0 |
Table 1: Rapid compaction of construct diameter during the static maturation. Wall thickness of the constructs and the compaction rate as a function of time of static culture. Compaction was measured by determining the external diameter of the tubular constructs with a scanning laser interferometer (Series 183B, LaserMike 136). After 24 hr, the constructs compacted to 57% ± 2% of their molded dimensions. Data are expressed as mean ± SD (n = 3). The presence and the activity of living smooth muscle cells was the only responsible for such major changes.
Supplemental Video 1: Harvesting of the non-remodeled tubular collagen gels. Please click here to view this video.
Supplemental Video 2: Cells-driven compaction of tubular collagen gels. Please click here to view this video.
Supplemental Video 3: Manipulation of the non-remodeled tubular collagen gels. Please click here to view this video.
Supplemental Video 4: Manipulation of the cells-remodeled tubular collagen gels. Please click here to view this video.
Supplemental Video 5: Longitudinal fatigue test (at 30%) on cells-remodeled tubular collagen gels. Please click here to view this video.
Supplemental Video 6: Circumferential fatigue test (at 30%) on cells-remodeled tubular collagen gels. Please click here to view this video.
Among the community of vascular tissue engineers, tremendous efforts have been done to reproduce the tunica media layer responsible for the mechanical stability of blood vessels16. Since the pioneering work of Weinberg and Bell17, collagen has been widely used as a scaffold for vascular tissue engineering because of its biocompatibility, non-immunogenic properties and availability. However, the use of collagen represents a big challenge for researchers, as this material is not easy to handle, due to the intrinsic lack of mechanical stiffness. Manipulations during scaffold preparation may damage the scaffolds, compromising them for further use.
The technique described in this work allows: i) to engineer cellularized collagen gels into a tubular-shaped geometry; ii) to engineer biological tissues strong enough to be handled after a short static maturation period (1 or 2 weeks); iii) to assess mechanical and viscoelastic properties of such tubular-shaped biological tissues in 2 directions. Cells in the gel play a key role in the collagen matrix remodeling. During the maturation period, contractile SMCs led to the compaction of the gels yielding a construct with higher mechanical stability that could be assessed in the longitudinal and circumferential directions. Afterwards, HUVECs seeded in the luminal side of the constructs generated a homogenous and viable endothelium, thus demonstrating the suitability of the collagen gels for vascular tissue engineering applications.
The bioreactor presented in this work was specifically designed to provide an optimal environment for cell growth during static maturation. In addition, the devices developed for the characterization of the mechanical and viscoelastic properties of the constructs were designed with the aim to reduce any potential damage inherent to the manipulation of such delicate materials. Hence, the static bioreactor was equipped of a 0.22 µm filter and a filter membrane on the cap (step 1.1.2, Figure 1A and B) that allowed gas exchange between culture medium inside the reservoir and the incubator, while keeping a sterile culture environment. The luer septum at the bottom was used as a port for culture medium sampling and changing during static culture. Some critical steps have to be considered during construct fabrication and characterizations. All the manipulations (performed in the step 2.1.1 and in the subsequent steps) that might alter the sterility of the system were performed in a sterile biological hood. Cells and collagen gel mixture preparation was handled on ice in order to delay the gelation process (steps 2.1.4 to 2.1.7). At step 2.1.7, any air-bubbles entrapped in the mixture prior to gelation are potential stress concentration areas that can compromise the stability of the constructs. Therefore, removal of such air-bubbles requires slightly shaking the assembly or using medical vacuum for 3 min for degasing in sterile conditions. Finally, the grips were specifically designed for maintaining the axis of the mandrel central in the tubular mold during gelation and for allowing delicate manipulation of the constructs during harvesting (removal of the mandrel, section 2.4), for endothelialization, and for facilitating the mounting onto the mechanical system (longitudinal tests).
The present protocol proposes an original easy-to-process alternative approach of reinforcement of collagen gels constructs based on the natural inherent contractile potential of SMCs. Common techniques of collagen matrices reinforcement involve the use of physical and chemical crosslinking agents that can have deleterious effects on cells-matrix interactions18–20. The fabrication technique presented in this work allows directing this cells-driven remodeling process to yield a tissue-engineered construct with targeted mechanical properties without any physical or chemical treatment.
Characterization of mechanical and viscoelastic properties of hydrated collagen gels is a great challenge. In this perspective, the present protocol describes an original simple and efficient method for assessing the mechanical properties of tubular soft tissues. This characterization can be performed not only in the circumferential direction, but also in the longitudinal direction, directly on the whole tubular structure. During mechanical characterization, temperature, aqueous environment, pH and ionic strength are some of the environmental factors that are known to drastically affect the mechanical behavior of biological tissues21. Hence, the present work suggests an original set-up and protocol for the mechanical characterization of biological tissues in a highly reproducible pseudo-physiological environment (saline solution at 37 °C and pH 7.4). To the best of our knowledge, this kind of characterization has never been reported elsewhere.
In conclusion, the technique proposed in this work demonstrates the high potential of direct mixing of cells with collagen for vascular tissue engineering applications. This method together with the mechanical characterization and endothelialization process constitute high polyvalent protocols. Hence, through slight modifications of the set-ups and protocols while keeping the same rationale, main requirements for engineering vascular tissue equivalents can be addressed such as rapid and uncomplicated processing, including endothelialization, and the possibility to be transposed to a wide range of soft tissues with various lengths and diameters. Furthermore, different adherent cell types, ECM proteins and molded geometries can be investigated for a number of targeted applications, such as engineering tendons, skin grafts, cardiac patches, nerves, among others. Although the mechanical properties of the constructs are encouraging, they are still lower than those of native tissues. In this context, we strongly believe that a very short static maturation period is a crucial step toward the dynamic stimulation into a bioreactor, thus leading to a higher structural integrity and mechanical stability. However, the possibility to rapidly produce tissue-engineered cellularized collagen-based constructs suitable for mechanical and histological analyses makes the static bioreactor described herein a useful and promising tool to provide insight into the interplay between cells and ECM during growth and remodeling, or even to be used as a model for therapies and drug delivery systems.
This research was funded by the Natural Science and Engineering Research Council of Canada, the Canadian Institute for Health Research and the CHU de Québec Research Center.
Name | Company | Catalog Number | Comments |
CellTreat 50 mL Bio-Reaction tubes | CELLTREAT Scientific Products | 229-475 | Centrifuge tube |
Male luer with lock ring x 1/8" hose barb. PP. 25/pk | Cole Parmer | RK-45503-04 | Luer fittings for "gas-exchange port" |
Female luer x 1/8" hose barb adapter. PP. 25/pk | Cole Parmer | RK-45500-04 | Luer fittings for the "medium sampling port" |
Masterflex platinum-cured silicone tubing L/S 17. 25 ft. | Cole Parmer | RK-96410-17 | Tube 1 and 2 for the gauze grippers |
Masterflex platinum-cured silicone tubing L/S 16. 25 ft. | Cole Parmer | RK-96410-16 | Tube 3 for the gauze grippers |
Silastic Medical adhesive silicone, type A | Dow Corning | - | Silicon glue for the fabrication of the static bioreactor |
Polyvent 4 Vessel venting filters | Whatman | 6713-0425 | Filter for "gas exchange port" |
Rod. PP. stirring. 8’’ | Scienceware | 377660008 | Mandrel |
Stopper silicone rubber 00 PK12 | VWR | 59590-084 | Stopper for the insertion of the mandrel to the vented cap of the centrifuge tube |
Krytox PFPE/PTFE Greases | Dupont | GPL 202 | Medical grade grease for covering the mandrel |
Trypsin-EDTA (0.5%) | Gibco | 15400-054 | Cell culture |
Xiameter RTV-4130-J base and curing agent | Dow Corning | - | C-shaped silicone support for endothelialization |
Dulbecco’s modified Eagle medium, DMEM, high glucose, pyruvate | Gibco (Life Technology) | 11995-065 | Cell culture |
Pure acetone (99%) | Laboratoire Mat Inc. | AP0102 | Chemical for collagen extraction |
Isopropyl alcohol (HPLC grade, 99.9%) | Fisher Scientific | AC610080040 | Chemical for collagen extraction |
0.02 N acetic acid (glacial acetic acid, HPLC grade, 99%; Fisher Scientific, | Fisher Scientific | FL070494 | Chemical for collagen extraction |
Chloroform solution (99%) | Laboratoire Mat Inc. | CR 0179 | Chemical for collagen extraction |
Hepes | Sigma-Aldrich | 163716 | Chemical for construct preparation |
NaOH | Laboratoire Mat Inc. | SR-0169 | Chemical for construct preparation |
LaserMike 136 | LaserMike | Series 183B | Scanning laser interferometer |
ElectroPulse MicroTester | Instron Corporation | - | Micromechanical Tester |
HyClone Media M199/EBSS, 500 mL | GE Healthcare Life Sciences | SH30253.01 | Component of cell culture medium |
Fetal bovine serum HI - 500mL | Gibco | SH 30396.03 | Component of cell culture medium |
Porcine serum (PS) | Sigma-Aldrich | P9783 | Component of cell culture medium |
Penicillin-Streptomicin | Gibco | 15140-122 | Component of cell culture medium |
Phosphate buffered saline (PBS) | Fisher Scientific | BP661-50 | Saline solution |
Tissue culture flask T17CN Vent Cap Red | Sarstedt Inc. | 83.1812.002 | Cell culture |
ColorpHast- pH-indicator strips (pH=6.5-10.0) | EMD | 9583 | pH measurements |
Matrigel Basement Membrane Matrix Growth Factor Reduced, 5 mL vial | BD Biosciences - Discovery Labware | 356230 | Concentrate protein mixture for endothelialization process |
LifeCam VX-3000 | Microsoft | - | Thickness measurement |
Biochemical analyzer, DxC600 | Beckman Coulter Unicell Synchron | - | Glucose and lactate concentrations measurements |
Collagen fibers | Rat tails | - | Collagen was extracted in the laboratory |
Porcine smooth muscle cells (pSMCs) | Porcine aortas | - | pSMCs were isolated in the laboratory |
Human umbilical vein endothelial cells (HUVECs) | Human umbilical veins | - | HUVECs were isolated in the laboratory |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved