A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Palatine tonsils are a rich source of B and T lymphocytes. Here we provide an easy, efficient and rapid protocol to isolate B and T lymphocytes from human palatine tonsils. The method described has been specifically adapted for studies of the viral etiology of tonsil inflammation known as tonsillitis.
Tonsils form a part of the immune system providing the first line of defense against inhaled pathogens. Usually the term “tonsils” refers to the palatine tonsils situated at the lateral walls of the oral part of the pharynx. Surgically removed palatine tonsils provide a convenient accessible source of B and T lymphocytes to study the interplay between foreign pathogens and the host immune system. This video protocol describes the dissection and processing of surgically removed human palatine tonsils, followed by the isolation of the individual B and T cell populations from the same tissue sample. We present a method, which efficiently separates tonsillar B and T lymphocytes using an antibody-dependent affinity protocol. Further, we use the method to demonstrate that human adenovirus infects specifically the tonsillar T cell fraction. The established protocol is generally applicable to efficiently and rapidly isolate tonsillar B and T cell populations to study the role of different types of pathogens in tonsillar immune responses.
Tonsils are collections of incompletely encapsulated lymphoid tissues that lie under, and in contact with, the epithelium in the upper aero-digestive tract. Usually the term “tonsils” refers to the palatine tonsils situated at the lateral walls of the oral part of the pharynx. The paired palatine tonsils together with the nasopharyngeal tonsil (adenoid), paired tubal tonsils and lingual tonsils constitute the so-called “Waldeyer´s ring”. The latter is responsible for the initial contact between inhaled or ingested pathogens and the lymphoid tissues of the aerodigestive tract1,2. Indeed, numerous reports have shown that both bacterial and viral antigens can be detected in palatine tonsil tissue samples2-6.
The palatine tonsils are composed of dense lymphoid tissue covered by a stratified squamous non-keratinising epithelium. The tonsils have numerous crypts, epithelial invaginations, which penetrate the parenchyma increasing the surface area. Histologically, the palatine tonsils contain numerous lymphoid follicles with germinal centers, which are the sites for B cell maturation and differentiation (B-cell areas). Likewise, the palatine tonsils encompass T cells, which are mainly located in the extrafollicular regions (T-cell areas). In addition to the B and T cells, also various follicular dendritic cells can be detected in palatine tonsils1,2.
Due to their anatomic location, the palatine tonsils are easily accessible by surgical interventions. For example, surgical removal of tonsils, known as tonsillectomy, is routinely carried out worldwide7. In children with tonsillar hyperplasia, a partial surgical removal of the tonsils (tonsillotomy) is sometimes used, causing less postoperative pain to the patients. Considering the accumulation of various pathogens in tonsils, surgically removed tonsils provide a unique opportunity to study the influence of viral and bacterial agents on tonsillar lymphocyte functions2,8. Furthermore it is possible to study if some pathogens prefer to reside in specific cell subpopulations9. In addition, as the tonsils are rich source of B lymphocytes, isolated tonsillar B lymphocytes can be efficiently used to study the activity of different B cell subpopulations10. However, as the palatine tonsils contain a mixture of cell types an efficient method to separate the different cell subpopulations is needed.
Here, we describe a simple method for efficient and rapid isolation of tonsillar B and T cell populations from human palatine tonsils by using a magnetic-activated cell separation technique (Figure 1). The method described here is useful for scientists who want to assess the role of different infectious agents in human lymphoid organs such as palatine tonsils.
The protocol describes the isolation of lymphoid cells from human patient material and therefore requires an ethical approval. The work done in the present study was granted by the Uppsala Ethical Review Board (Dnr. 2013/387).
1. Isolation of Mononuclear Cells (MNCs) from Human Palatine Tonsils
CAUTION: All unscreened material of human origin like blood, tissues or body fluids should be regarded as potentially infected material. Therefore, recommended biosafety practices for handling the human tissues should be followed.
Note: To avoid contamination, all solutions and cell culture equipment must be sterile. All buffers and solutions should be pre-cooled and kept on ice. Tonsil tissues and isolated cells should be kept and handled on ice.
2. Cryopreservation of Tonsillar Cells
3. Positive Selection of T Lymphocyte Population from Tonsillar MNCs
Note 1: This protocol is based on positive selection of human CD3+ T lymphocytes from tonsillar MNCs using magnetic beads coupled to the CD3 antibody. It is possible to start this section from fresh (Section 1) or the frozen (Section 2) MNCs.
Note 2: Start with 3 x 107 MNCs. Do not exceed this cell number, since the separation columns may clog and this will reduce the isolation efficiency. Use bigger columns if more cells will be handled. The volumes used in this protocol have been experimentally optimized for the number of cells used in our experimental setup.
4. Flow Cytometry Analysis of Isolated Tonsillar B and T Lymphocytes
CAUTION: Paraformaldehyde solution is irritant and suspected carcinogen. Wear suitable protective clothing, gloves, and eye/face protection.
Note 1: This protocol describes the method for direct staining of the isolated B and T cells by Fluorescence Activated Cell Sorting (FACS) analysis. The main purpose of this step is to assess the purity of the isolated cell populations after CD3 magnetic antibody separation. For this purpose established B and T cell markers, fluorophore-conjugated monoclonal antibodies CD20-FITC and CD2-APC, are used. Also the inclusion of isotype control antibodies is highly recommended to distinguish the non-specific “background” binding of the CD2 and CD20 antibodies (see step 4.8).
Note 2: It is possible to keep the purified cell fractions in a 1% paraformaldehyde (PFA) solution in the dark at 4 °C until the time of staining (e.g., next day). Also the same procedure is applicable if there is a time gap between staining and FACS analysis. Remember that in both cases cells should be washed properly with PBSA (PBS containing 0.2% BSA) buffer, prior to staining or FACS analysis.
5. PCR Detection of Adenovirus DNA in Isolated Tonsillar B and T Lymphocytes
Note 1: The adenovirus hexon gene primers are AdRJC1 (5’-GACATGACTTTCGAGGTCGATCCCATGGA-3’) and AdRJC2 (5’-CCGGCTGAGAAGGGTGTGCGCAGGTA-3’)11. These primers generate an amplicon of 139 bp. The host 18S rRNA gene can be detected with primers tp206 (5'-CCCCTCGATGCTCTTAGCTG-3’) and tp207 (5'-TCGTCTTCGAACCTCCGACT-3’). The expected amplicon size is 300 bp.
Note 2: Every PCR run includes a negative control (distilled H2O) and a positive DNA control obtained from human B cell line (BJAB) infected with human adenovirus type 512.
An efficient separation of tonsillar MNCs results in highly purified subpopulations of B and T lymphocytes. This was confirmed by FACS analysis using anti-CD20 and anti-CD2 antibodies to detect B and T lymphocyte populations, respectively (Figure 3A). In contrast, an inefficient separation of MNCs results in cell fractions that are a mixture of cells from both B and T lymphocyte subpopulations (Figure 3B).
The isolated tonsillar B and T lymphocytes (Fi...
One of the most important factors affecting the outcome of this protocol is the use of fresh tonsillar material as the starting material. Therefore, the tonsil samples should be processed within 3 hr after surgery. Tonsils could be obtained from both adults and children. The tonsillar material from the children is usually smaller due to the partial surgical removal of the tonsils (tonsillotomy). Therefore, the number of MNCs obtained from tonsillotomy samples (1 x 107-1 x 108) is less compared to to...
The authors have nothing to disclose.
This work was supported by the Swedish Cancer Society (11 0253, 13 0469), the Swedish Research Council (K2012-99X-21959-01-3), Marcus Borgströms Foundation and the Swedish Research Council through a grant to the Uppsala RNA Research Centre (2006-5038-36531-16). We are indebted to the BioVis core facility at Uppsala University for much help with the FACS analysis.
Name | Company | Catalog Number | Comments |
Hanks balanced salt solution (HBSS) | Gibco | 14175-053 | Contains 5% fetal bovine serum (FBS), 10 mM Glutamine, 0.05 mg/ml Gentamicin and 1% Antibiotic-Antimycotic mix |
Freezing medium | 90% FBS and 10% DMSO | ||
MACS buffer | PBS (pH 7.2), 0.5% BSA and 2mM EDTA | ||
PBSA | PBS containing 0.2% BSA | ||
PFA | PBS containing 1% paraformaldehyde (PFA). Make fresh. PFA is suspected carcinogen. Wear gloves and goggles. | ||
Antibiotic-Antimycotic mix | Gibco | 15240-062 | |
60 mm Petridish | Nunc | 150326 | |
Dissecting foreceps | Fisher Scientific | 1381241 | |
Straight iris scissors | Fisher Scientific | 12912055 | |
disposable scalpels | Swann-Morton | REF 0501 | |
100 μm plastic cell strainer | Corning Life Sciences | 352360 | |
40 μm plastic cell strainers | Corning Life Sciences | 352340 | |
2 ml plastic syringe | BD Biosciences | 300185 | |
15 ml conical centrifuge tubes | SARSTEDT | 62554502 | |
50 ml conical centrifuge tubes | SARSTEDT | 62547254 | |
Low-speed centrifuge with fixed-angle or swinging-bucket rotor | Thermo Scientific Heraeus Megafuge 16R | ||
Ficoll–Hypaque | Sigma-Aldrich | F5415-50ML | Ficoll solution |
Fetal calf serum | Biological industries | 040071A | |
Dimethyl sulphoxide (DMSO) | SIGMA | D2650-5X5ML | |
MACS MS columns | Miltenyi Biotec | 130-042-201 | |
MACS human CD3 MicroBeads | Miltenyi Biotec | 130-092-881 | |
MACS separator (Octo MACS) | Miltenyi Biotec | 130-042-109 | |
Bovine Serum Albumin (BSA) | Merck Millipore | 1120180100 | |
EDTA | AnalaR NORMAPUR | 20302.293 | |
CD2 conjugated to allophycocyanin (CD2-APC) | BD Biosciences | 560642 | |
CD20 conjugated to fluorescein isothiocyanate (CD20-FITC) | BD Biosciences | 556632 | |
Human serum | Rockland Immunochemicals | D119-0100 | |
Phusion High-Fidelity DNA Polymerase | Thermo Scientific | F-530L | |
FACS tubes | BD Falcon | 352003 | |
Cryotube | SARSTEDT | 72379 | |
BD LSRII flowcytometer | BD Biosciences | ||
BD FACSDiva 4.1 software | BD Biosciences | ||
Nucleospin Blood | Macherey-Nagel | 740951.50 | DNA isolation kit |
TRIzol reagent | Life technologies | 15596 | RNA isolation reagent |
Hemocytometer | The Paul Marienfeld GmbH & Co. KG | 0610030 | cell counter device |
GelRed | Biotium | 41003 | Nucleic acid gel stain |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved