A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a detailed protocol to construct and screen mutant libraries for directed evolution campaigns in Saccharomyces cerevisiae.
Directed evolution in Saccharomyces cerevisiae offers many attractive advantages when designing enzymes for biotechnological applications, a process that involves the construction, cloning and expression of mutant libraries, coupled to high frequency homologous DNA recombination in vivo. Here, we present a protocol to create and screen mutant libraries in yeast based on the example of a fungal aryl-alcohol oxidase (AAO) to enhance its total activity. Two protein segments were subjected to focused-directed evolution by random mutagenesis and in vivo DNA recombination. Overhangs of ~50 bp flanking each segment allowed the correct reassembly of the AAO-fusion gene in a linearized vector giving rise to a full autonomously replicating plasmid. Mutant libraries enriched with functional AAO variants were screened in S. cerevisiae supernatants with a sensitive high-throughput assay based on the Fenton reaction. The general process of library construction in S. cerevisiae described here can be readily applied to evolve many other eukaryotic genes, avoiding extra PCR reactions, in vitro DNA recombination and ligation steps.
Directed molecular evolution is a robust, fast and reliable method to design enzymes1, 2. Through iterative rounds of random mutation, recombination and screening, improved versions of enzymes can be generated that act on new substrates, in novel reactions, in non-natural environments, or even to assist the cell to achieve new metabolic goals3-5. Among the hosts used in directed evolution, the brewer's yeast Saccharomyces cerevisiae offers a repertoire of solutions for the functional expression of complex eukaryotic proteins that are not otherwise available in prokaryotic counterparts6,7.
Used exhaustively in cell biology studies, this small eukaryotic model has many advantages in terms of post-translational modifications, ease of manipulation and transformation efficiency, all of which are important traits to engineer enzymes by directed evolution8. Moreover, the high frequency of homologous DNA recombination in S. cerevisiae coupled to its efficient proof-reading apparatus opens a wide array of possibilities for library creation and gene assembly in vivo, fostering the evolution of different systems from single enzymes to complex artificial pathways9-12. Our laboratory has spent the past decade designing tools and strategies for the molecular evolution of different ligninases in yeast (oxidoreductases involved in the degradation of lignin during natural wood decay)13-14. In this communication, we present a detailed protocol to prepare and screen mutant libraries in S. cerevisiae for a model flavooxidase, -aryl-alcohol oxidase (AAO15)-, that can be easily translated to many other enzymes. The protocol involves a focused-directed evolution method (MORPHING: Mutagenic Organized Recombination Process by Homologous in vivo Grouping) assisted by the yeast cell apparatus16, and a very sensitive screening assay based on the Fenton reaction in order to detect AAO activity secreted into the culture broth17.
1. Mutant Library Construction
2. High-Throughput Screening Assay (Figure 3)
AAO from P. eryngii is an extracellular flavooxidase that supplies fungal peroxidases with H2O2 to start attacking lignin. Two segments of AAO were subjected to focused-directed evolution by MORPHING in order to enhance its activity and its expression in S. cerevisiae 19. Irrespective of the foreign enzymes harbored by S. cerevisiae, the most critical issue when constructing mutant libraries in yeast concerns the engineering of s...
In this article, we have summarized most of the tips and tricks employed in our laboratory to engineer enzymes by directed evolution in S. cerevisiae (using AAO as an example) so that they can be adapted for use with many other eukaryotic enzyme systems by simply following the common approach described here.
In terms of library creation, MORPHING is a fast one-pot method to introduce and recombine random mutations in small protein stretches while leaving the remaining regions of the p...
The authors have nothing to disclose.
This work was supported by the European Commission project Indox-FP7-KBBE-2013-7-613549; a Cost-Action CM1303-Systems Biocatalysis; and the National Projects Dewry [BIO201343407-R] and Cambios [RTC-2014-1777-3].
Name | Company | Catalog Number | Comments |
1. Culture media | |||
Ampicillin sodium salt | Sigma-Aldrich | A0166 | CAS Nº 69-52-3 M.W. 371.39 |
Bacto Agar | Difco | 214010 | |
Cloramphenicol | Sigma-Aldrich | C0378 | CAS Nº 56-75-7 M.W. 323.13 |
D-(+)-Galactose | Sigma-Aldrich | G0750 | CAS Nº 59-23-4 M.W. 180.16 |
D-(+)-Glucose | Sigma-Aldrich | G5767 | CAS Nº 50-99-7 M.W. 180.16 |
D-(+)-Raffinose pentahydrate | Sigma-Aldrich | 83400 | CAS Nº 17629-30-0 M.W. 594.51 |
Peptone | Difco | 211677 | |
Potassium phosphate monobasic | Sigma-Aldrich | P0662 | CAS Nº 7778-77-0 M.W. 136.09 |
Uracil | Sigma Aldrich | U1128 | |
Yeast Extract | Difco | 212750 | |
Yeast Nitrogen Base without Amino Acids | Difco | 291940 | |
Yeast Synthetic Drop-out Medium Supplements without uracil | Sigma-Aldrich | Y1501 | |
Name | Company | Catalog Number | Comments |
2. PCR Reactions | |||
dNTP Mix | Agilent genomics | 200415-51 | 25 mM each |
iProof High-Fidelity DNA polymerase | Bio-rad | 172-5301 | |
Manganese(II) chloride tetrahydrate | Sigma-Aldrich | M8054 | CAS Nº 13446-34-9 M.W. 197.91 |
Taq DNA Polymerase | Sigma-Aldrich | D4545 | For error prone PCR |
Name | Company | Catalog Number | Comments |
3. Plasmid linearization | |||
BamHI restriction enzyme | New England Biolabs | R0136S | |
Bovine Serum Albumin | New England Biolabs | B9001S | |
XhoI restriction enzyme | New England Biolabs | R0146S | |
Not I restriction enzyme | New England Biolabs | R0189S | |
Gel Red | Biotium | 41003 | For staining DNA |
Name | Company | Catalog Number | Comments |
4. FOX assays | |||
Ammonium iron(II) sulfate hexahydrate | Sigma-Aldrich | F3754 | CAS Nº 7783-85-9 M.W. 392.14 |
Anysil Alcohol | Sigma Aldrich | W209902 | CAS Nº 105-13-5 M.W. 138.16 |
D-Sorbitol | Sigma-Aldrich | S1876 | CAS Nº 50-70-4 M.W. 182.17 |
Hydrogen peroxide 30% | Merck Millipore | 1072090250 | FOX standard curve |
Xylenol Orange disodium salt | Sigma-Aldrich | 52097 | CAS Nº 1611-35-4 M.W. 716.62 |
Name | Company | Catalog Number | Comments |
5. Agarose gel stuff | |||
Agarose | Norgen | 28035 | CAS Nº 9012-36-6 |
Gel Red | Biotium | 41003 | DNA analysis dye |
GeneRuler 1kb Ladder | Thermo Scientific | SM0311 | DNA M.W. standard |
Loading Dye 6x | Thermo Scientific | R0611 | |
Low-melting temperature agarose | Bio-rad | 161-3112 | CAS Nº 39346-81-1 |
Name | Company | Catalog Number | Comments |
6. Kits and cells | |||
S. cerevisiae strain BJ5465 | LGC Promochem | ATTC 208289 | Protease deficient strain with genotype: MATα ura3-52 trp1 leu2-delta1 his3-delta200 pep4::HIS3 prb1-delta1.6R can1 GAL |
E. coli XL2-Blue competent cells | Agilent genomics | 200150 | For plasmid purification and amplification |
NucleoSpin Gel and PCR Clean-up Kit | Macherey-Nagel | 740,609,250 | DNA gel extraction |
NucleoSpin Plasmid Kit | Macherey-Nagel | 740,588,250 | Column miniprep Kit |
Yeast Transformation Kit | Sigma-Aldrich | YEAST1-1KT | Included DNA carrier (Salmon testes) |
Zymoprep yeast plasmid miniprep I | Zymo research | D2001 | Plasmid extraction from yeast |
Name | Company | Catalog Number | Comments |
7. Plates | |||
96-well plates | Greiner Bio-One | 655101 | Clear, non-sterile, polystyrene (for activity measurements) |
96-well plates | Greiner Bio-One | 655161 | Clear, sterile, polystyrene (for microfermentations) |
96-well plate lid | Greiner Bio-One | 656171 | Clear, sterile, polystyrene (for microfermentations) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved