JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We have developed a nerve injury method to reliably examine muscle reinnervation, and thus regeneration of neuromuscular junctions in mice. This technique involves injuring the common fibular nerve via a simple and highly reproducible surgery. Muscle reinnervation in then assessed by whole-mounting the extensor digitorum longus muscle.

Abstract

The neuromuscular junction (NMJ) undergoes deleterious structural and functional changes as a result of aging, injury and disease. Thus, it is imperative to understand the cellular and molecular changes involved in maintaining and repairing NMJs. For this purpose, we have developed a method to reliably and consistently examine regenerating NMJs in mice. This nerve injury method involves crushing the common fibular nerve as it passes over the lateral head of the gastrocnemius muscle tendon near the knee. Using 70 day old female mice, we demonstrate that motor axons begin to reinnervate previous postsynaptic targets within 7 days post-crush. They completely reoccupy their previous synaptic areas by 12 days. To determine the reliability of this injury method, we compared reinnervation rates between individual 70 day old female mice. We found that the number of reinnervated postsynaptic sites was similar between mice at 7, 9, and 12 days post-crush. To determine if this injury assay can also be used to compare molecular changes in muscles, we examined levels of the gamma-subunit of the muscle nicotinic receptor (gamma-AChR) and the muscle-specific kinase (MuSK). The gamma-AChR subunit and MuSK to are highly upregulated following denervation and return to normal levels following reinnervation of NMJs. We found a close relationship between transcript levels for these genes and innervation status of muscles. We believe that this method will accelerate our understanding of the cellular and molecular changes involved in repairing the NMJ and other synapses.

Introduction

In young adult and healthy animals, the neuromuscular junction (NMJ) is a highly stable connection between the presynapse, the nerve ending of an α-motor axon, and the postsynapse, the specialized region of an extrafusal muscle fiber where nicotinic acetylcholine receptors (AChRs) selectively aggregate1. The nearly perfect apposition of the pre- and post-synaptic apparatuses is necessary for proper neurotransmission, survival of α-motor neurons and muscle fibers and motor function. Unfortunately, the function of the NMJ is adversely affected by aging, diseases such as amyotrophic lateral sclerosis (ALS), autoimmune diseases and injury to muscles....

Access restricted. Please log in or start a trial to view this content.

Protocol

All experiments were carried out under NIH guidelines and animal protocols approved by the Virginia Tech Institutional Animal Care and Use Committee.

1. Preparing Animals for Surgery

  1. Anesthetize mice with a mixture of ketamine (90 mg/kg) and xylazine (10 mg/kg) via subcutaneous inguinal injection with a sterile 1 ml insulin syringe. Carrier solution contains a mixture of 0.9% saline, 17.4 mg/ml ketamine, and 2.6 mg/ml xylazine. Place animals back in cages while waiting for medication to take effect.
    NOTE: If the loading dose does not provide sufficient anesthesia for the duration of the procedure, an additional 25% of the....

Access restricted. Please log in or start a trial to view this content.

Results

The common fibular nerve, also called the common peroneal nerve, arises from the sciatic nerve above the popliteal fossa, where it swings around the head of the fibula to the anterior aspect of the leg (Figure 1A). There it branches into the superficial and deep fibular nerves, together supplying the dorsiflexors of the foot and toes (anterior tibialis, extensor digitorum longus and brevis, and extensor halluces longus muscles), and the everters of the foot (peroneus musc.......

Access restricted. Please log in or start a trial to view this content.

Discussion

The method presented in this manuscript provides unique opportunities to identify mechanisms involved in repairing neuromuscular junctions (NMJ). This method involves crushing the common fibular nerve as it passes over the gastrocnemius tendon near the knee. We show that after only 5 sec of nerve compression with a forceps, complete degeneration is noted by 4 days after injury. In young adult mice, alpha-motor axons begin to reinnervate previous synaptic sites in the extensor digitorum longus muscle (EDL) at 7 days post-.......

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Valdez laboratory for intellectual input on experiments and comments on the manuscript.

....

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
KetamineVetOne501072
XylazineLloyd Inc. 003437 
Buprenorphine Zoopharm1Z-73000-150910 
NairNair
Kim-wipesKimtech34155
Electric RazorBraintree ScientificCLP-64800
80% EtOH/H20
10% Proviodine
1 ml Insulin Syringe
Spring ScissorsVannas91500-09
No. 15 scalpelBraintree ScientificSSS 15
#5 ForcepsDumont11252-00
6-0 silk suture on reverse cutting needle Suture Express752B 
Rodent Heating PadBraintree ScientificAP-R-18.5
Alexa 555 conjugated alpha-BTXMolecular ProbesB35451
VectashieldVector LabsH-1000
Olympus Stereo Zoom MicroscopeOlympus562037192
Zeiss 700 Confocal MicroscopeZeiss
Variable-flow peristaltic perfusion pumpFisher Scientific13-876-3
Aurum Total RNA Mini KitBio-Rad7326820
Bio-Rad iScript RT SupermixBio-Rad1708840
SsoFast Evagreen SupermixBio-Rad1725200
Bio-Rad CFX96Bio-Rad1855196
Puralube Vet ointmentPuralube1621
Synaptotagmin-2 antibodyAntibodies-OnlineABIN401605
Neurofilament antibodyAntibodies-OnlineABIN2475842

References

  1. Sanes, J. R., Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2 (11), 791-805 (2001).
  2. Moloney, E. B., de Winter, F., Verhaagen, J.

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keyword Extraction Fibular Nerve InjuryNeuromuscular JunctionsNerve RegenerationPeripheral Nerve InjuryNerve CrushNerve Injury MethodMouse ModelSurgical ProcedureNerve TracingMuscle SeparationNerve ExposureNerve Crush Injury

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved