A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present guidelines for developing synthetic 'chemical transducers' that can induce communication between naturally unrelated proteins. In addition, detailed protocols are presented for synthesizing and testing a specific 'transducer' that enables a growth factor to activate a detoxifying enzyme and consequently, to regulate the cleavage of an anticancer prodrug.
Signal transduction pathways, which control the response of cells to various environmental signals, are mediated by the function of signaling proteins that interact with each other and activate one other with high specificity. Synthetic agents that mimic the function of these proteins might therefore be used to generate unnatural signal transduction steps and consequently, alter the cell's function. We present guidelines for designing 'chemical transducers' that can induce artificial communication between native proteins. In addition, we present detailed protocols for synthesizing and testing a specific 'transducer', which can induce communication between two unrelated proteins: platelet-derived growth-factor (PDGF) and glutathione-S-transferase (GST). The way by which this unnatural PDGF-GST communication could be used to control the cleavage of an anticancer prodrug is also presented, indicating the potential for using such systems in 'artificial signal transduction therapy'. This work is intended to facilitate developing additional 'transducers' of this class, which may be used to mediate intracellular protein-protein communication and consequently, to induce artificial cell signaling pathways.
Signal transduction pathways play a significant role in virtually every cellular process and allow the cell to rapidly respond to environmental signals.1 These pathways are often triggered by the binding of a signaling molecule to an extracellular receptor, which results in activation of intracellular enzymes. Amplification and propagation of this signal within the cell is mediated by the function of signaling proteins that form a network of protein-protein interactions in which enzymes are reversibly activated with high specificity. Because dysregulation of these networks frequently leads to cancer development, there has been much interest in establishing ....
1. Synthesis of the 'Chemical Transducer'
The design, synthesis, and mechanism of action of a 'chemical transducer' that can induce artificial communication between PDGF and GST are presented in Figure 2. The structure of the 'transducer' integrates a PDGF DNA aptamer and a bis-ethacrynic amide (bEA), which is a known GST inhibitor (Figure 2a).19 These binders enable the 'transducer' to bind both PDGF and GST with different affinities, namely, with dissociation .......
We presented a method for designing and testing of a 'chemical transducer' that can induce artificial communication between two naturally unrelated proteins, GST and PDGF, without modifying the native proteins. The unnatural GST-PDGF communications could be detected in real time by using enzymatic assays that follow the changes in the activity of GST in the presence of the 'chemical transducer' and increasing the concentrations of PDGF. In addition to detecting the activation of GST by PDGF, these assays were used to fol.......
The authors have nothing to disclose.
This research was supported by the Minerva Foundation, the HFSP Organization, and a European Research Council Grant (Starting Grant 338265).
....Name | Company | Catalog Number | Comments |
1-chloro-2,4-dinitrobenzene | Sigma-Aldrich | 237329 | |
Acetic acid | Bio Lab | 01070521 | |
Acetnitrile | J.T.Baker | 9017-03 | |
Ascorbic acid | Sigma-Aldrich | A4544 | |
Copper(II) Sulfate pentahydrate | Merck-Millipore | 102790 | |
Dimethyl sulfoxide | Merck-Millipore | 802912 | |
Dulbecco's Phosphate Buffered Saline | Biological Industries | 02-023-5A | |
Ethacrynic acid | Tokyo Chemical Industry Co. Ltd | E0526 | |
Glutathione-s-transferase M1-1 | Israel Structural Proteomics Center (Weizmann Institute of Science, Rehovot, Israel) | ||
JS-K | Sigma-Aldrich | J4137 | |
L-glutathione reduced | Sigma-Aldrich | G4251 | |
Magnesium Chloride | J.T.Baker | 0162 | |
nitrate/nitrite colorimetric assay kit | Cayman Chemical | 780001 | |
Oligonucleotides | W. M. Keck Foundation Biotechnology at Yale University | custom order | |
PDGF-BB | Israel Structural Proteomics Center (Weizmann Institute of Science, Rehovot, Israel) | ||
TBTA | Sigma-Aldrich | 678937 | |
Triethylamine | Sigma-Aldrich | T0886 | |
Desalting column | GE Healthcare | illustra MicroSpin G-25 Columns | |
HPLC | Waters | 2695 separation module | |
HPLC column | Waters | XBridgeTM OST C18 column (2.5 μM, 4.6 mm × 50 mm) | |
HPLC column | Waters | XBridgeTM OST C18 column (2.5μM, 10 mm × 50 mm) | |
Plate reader | BioTek | synergy H4 hybrid |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved