JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Creation and Transplantation of an Adipose-derived Stem Cell (ASC) Sheet in a Diabetic Wound-healing Model

Published: August 4th, 2017



1Diabetic Center, Tokyo Women's Medical University School of Medicine, 2The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 3The Department of Anatomy and Developmental Biology, Tokyo Women's Medical University School of Medicine

Adipose-derived stem cells (ASCs) are easily isolated and harvested from the fat of normal rats. ASC sheets can be created using cell-sheet engineering and can be transplanted into Zucker diabetic fatty rats exhibiting full-thickness skin defects with exposed bone and then covered with a bilayer of artificial skin.

Artificial skin has achieved considerable therapeutic results in clinical practice. However, artificial skin treatments for wounds in diabetic patients with impeded blood flow or with large wounds might be prolonged. Cell-based therapies have appeared as a new technique for the treatment of diabetic ulcers, and cell-sheet engineering has improved the efficacy of cell transplantation. A number of reports have suggested that adipose-derived stem cells (ASCs), a type of mesenchymal stromal cell (MSC), exhibit therapeutic potential due to their relative abundance in adipose tissue and their accessibility for collection when compared to MSCs from other tissues. Therefore, ASCs appear to be a good source of stem cells for therapeutic use. In this study, ASC sheets from the epididymal adipose fat of normal Lewis rats were successfully created using temperature-responsive culture dishes and normal culture medium containing ascorbic acid. The ASC sheets were transplanted into Zucker diabetic fatty (ZDF) rats, a rat model of type 2 diabetes and obesity, that exhibit diminished wound healing. A wound was created on the posterior cranial surface, ASC sheets were transplanted into the wound, and a bilayer artificial skin was used to cover the sheets. ZDF rats that received ASC sheets had better wound healing than ZDF rats without the transplantation of ASC sheets. This approach was limited because ASC sheets are sensitive to dry conditions, requiring the maintenance of a moist wound environment. Therefore, artificial skin was used to cover the ASC sheet to prevent drying. The allogenic transplantation of ASC sheets in combination with artificial skin might also be applicable to other intractable ulcers or burns, such as those observed with peripheral arterial disease and collagen disease, and might be administered to patients who are undernourished or are using steroids. Thus, this treatment might be the first step towards improving the therapeutic options for diabetic wound healing.

The population of diabetic patients is increasing worldwide and reached 400 million in 20151; an estimated 15 - 25% of patients with diabetes are at risk from the progression of a lower-extremity diabetic ulcer2. Lower-extremity diabetic ulcers are intractable and might require a prolonged therapeutic period with rehabilitation training after complete recovery. A long therapy period often results in a significant reduction in patient quality of life. Thus, new therapies that decrease or prevent aggravation must be developed for the treatment of diabetic wounds. To evaluate diabetic wound healing, we optimized a diabetic ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experimental protocols presented below were approved by the Animal Welfare Committee of Tokyo Women's Medical University School of Medicine and abided by all requirements of the Guidelines for Proper Conduct of Animal Experiments.

1. Preparation of Animals, Instruments, Culture Media, and Dishes

  1. Prepare complete culture medium using minimum essential medium alpha containing 20% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Store this for several months at 4 °.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol attempted to establish a new cell-based therapy for intractable diabetic wounds. Briefly (as illustrated in Figure 1), allogeneic rASC sheets were created from normal rats using cell-sheet engineering and were then transplanted using a bilayer of artificial skin onto a full-thickness skin defect on a diabetic rat. Light microscope images of a good example of an rASC sheet (Figure 2A) and a bad example of an rASC sheet (Figure 2B

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The most critical steps for successfully culturing an rASC sheet are as follows: 1) The temperature must be maintained at approximately 37 °C during culturing on the temperature-responsive culture dishes. During the creation of an rASC sheet, every procedure was performed on a 37 °C thermo-plate, and every reagent was warmed to 37 °C to prevent the cells from spontaneously detaching from the dish31. 2) The recipient ZDF rats must be monitored to prevent the removal of the non-adhesi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors thank Dr. Yukiko Koga of the Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, for providing practical advice. We also thank Mr. Hidekazu Murata of the Diabetic Center of Tokyo Women’s Medical University School of Medicine for excellent technical support. This study was supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program of the Project for Developing Innovation Systems “Cell Sheet Tissue Engineering Center (CSTEC)” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
α-MEM glutamax Invitrogen 32571-036 Carlsbad, CA
Fetal bovine serum (FBS) Japan Bioserum Co Ltd. S1650-500
Penicillin/streptomycin Life Technologies 15140-122
Collagenase A Roche Diagnostics 10 103 578 001 Mannheim, Germany
60-cm2 Primaria tissue culture dish BD Biosciences 353803 Franklin Lakes, NJ
Dulbecco's Phosphate Buffer Saline (PBS) Life Technologies 1490-144
0.25% Trypsin-ethylenediamine tetraacetic acid (EDTA) Life Technologies 25200-056
L-ascorbic acid phosphate magnesium salt n-hydrate Wako 013-19641
35-mm temperature-responsive culture dish (UpcellTM) CellSeed NUNC-174904 Tokyo, Japan
Microwarm plate (MP-1000) Kitazato Science Co., Ltd. 1111
Rodent mechanical ventilator Stoelting #50206 Wood Dale, IL
4% isoflurane Pfizer Japan 114-13340-3 Tokyo, Japan
Artificial skin (Pelnac®) Smith & Nephew PN-R40060  Tokyo, Japan
Non-adhesive dressing (Hydrosite plus®) Smith & Nephew 66800679 Known as Allevyn non-adhessing® in the United State
5-0 nylon suture Alfresa EP1105NB45-KF2
20 CELLSTAR TUBES greiner bio-one 227 261
15mL Centrifuge Tube Corning Incorporated 430791

  1. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G., Apelqvist, J. The global burden of diabetic foot disease. Lancet. 366 (9498), 1719-1724 (2005).
  2. Zannettino, A. C., et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 214 (2), 413-421 (2008).
  3. Kern, S., Eichler, H., Stoeve, J., Kluter, H., Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24 (5), 1294-1301 (2006).
  4. Casteilla, L., Planat-Benard, V., Laharrague, P., Cousin, B. Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells. 3 (4), 25-33 (2011).
  5. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  6. Zuk, P. . The ASC: Critical Participants in Paracrine-Mediated Tissue Health and Function. , (2013).
  7. Nie, C., et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 20 (2), 205-216 (2011).
  8. Shin, L., Peterson, D. A. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med. 2 (1), 33-42 (2013).
  9. Okano, T., Yamada, N., Sakai, H., Sakurai, Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 27 (10), 1243-1251 (1993).
  10. Yamato, M., et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 7 (4), 473-480 (2001).
  11. Sekine, H., et al. Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Engineering Part A. 17 (23-24), 2973-2980 (2011).
  12. Kuhlmann, J., et al. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes. 52 (1), 138-144 (2003).
  13. Slavkovsky, R., et al. Zucker diabetic fatty rat: a new model of impaired cutaneous wound repair with type II diabetes mellitus and obesity. Wound Repair Regen. 19 (4), 515-525 (2011).
  14. Oltman, C. L., et al. Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats. Am J Physiol Endocrinol Metab. 289 (1), E113-E122 (2005).
  15. Coppey, L. J., Gellett, J. S., Davidson, E. P., Dunlap, J. A., Yorek, M. A. Changes in endoneurial blood flow, motor nerve conduction velocity and vascular relaxation of epineurial arterioles of the sciatic nerve in ZDF-obese diabetic rats. Diabetes Metab Res Rev. 18 (1), 49-56 (2002).
  16. Galiano, R. D., Michaels, V., Dobryansky, M., Levine, J. P., Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12 (4), 485-492 (2004).
  17. Lin, Y. C., et al. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 9 (2), 5243-5250 (2013).
  18. McLaughlin, M. M., Marra, K. G. The use of adipose-derived stem cells as sheets for wound healing. Organogenesis. 9 (2), 79-81 (2013).
  19. Cerqueira, M. T., et al. Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. Biomacromolecules. 14 (11), 3997-4008 (2013).
  20. Koga, Y., et al. Recovery course of full-thickness skin defects with exposed bone: an evaluation by a quantitative examination of new blood vessels. J Surg Res. 137 (1), 30-37 (2007).
  21. Cianfarani, F., et al. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 21 (4), 545-553 (2013).
  22. Matsuda, K., Suzuki, S., Isshiki, N., Ikada, Y. Re-freeze dried bilayer artificial skin. Biomaterials. 14 (13), 1030-1035 (1993).
  23. Miyahara, Y., et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 12 (4), 459-465 (2006).
  24. Iwata, T., et al. Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med. , (2013).
  25. Elloumi-Hannachi, I., Yamato, M., Okano, T. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med. 267 (1), 54-70 (2010).
  26. Watanabe, N., et al. Genetically modified adipose tissue-derived stem/stromal cells, using simian immunodeficiency virus-based lentiviral vectors, in the treatment of hemophilia. B. Hum Gene Ther. 24 (3), 283-294 (2013).
  27. Kim, W. S., et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 48 (1), 15-24 (2007).
  28. Nakagami, H., et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 25 (12), 2542-2547 (2005).
  29. Asahara, T., et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18 (14), 3964-3972 (1999).
  30. Kato, Y., et al. Allogeneic transplantation of an adipose-derived stem cell (ASC) sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. , db141133 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved