A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.
This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.
There are many different methods of 3D bioprinting1,2,3. 3D bioprinting is frequently classified by printing technology1, with examples such as inkjet bioprinting, microextrusion bioprinting, laser assisted bioprinting, a combination of methods, or newer approaches. 3D bioprinting can also be classified into scaffold-free or scaffold-dependent methods4. Most methods of 3D bioprinting are scaffold-dependent, where there is a need for biomaterials, e.g. bioinks5 or scaffolds6. However, scaffold-dependent 3D bioprinting face many issues and limitations4,7, such as immunogenicity of scaffolding material, cost of proprietary bioinks, slow speed and toxicity of degradation products.
Scaffold-free cardiac tissue engineering using spheroids has been attempted8, with the potential to overcome these disadvantages of scaffold-dependent tissue engineering. However, as acknowledged by the authors in that paper, it had been difficult to robustly handle and position spheroids in fixed locations, in the process of biofabrication. The concomitant use of 3D bioprinting and spheroid-based tissue engineering has the potential to overcome these difficulties. In this protocol, we describe 3D bioprinting of cardiac tissue without other biomaterials, using only cells in the form of spheroids.
Scaffold-free spheroid-based 3D bioprinters9 have the ability to pick up individual spheroids using vacuum suction and position them on a needle array. The concept of positioning spheroids on a needle array in 3D bioprinting, is inspired from the use of needle arrays (known as "kenzan") in the ancient Japanese art of flower arrangement, ikebana. This system allows spheroids to be precisely positioned in any configuration and results in the individual spheroids fusing together over a short period to create a 3D bioprinted tissue. This method thus allows spheroids to be manipulated with ease, with potential implications for the future of scaffold-free organ biofabrication.
1. Preparation of Cardiomyocytes
2. Preparation of Fibroblasts
3. Preparation of Endothelial Cells
4. Co-culture:
5. 3D Bioprinting of Scaffold-free Cardiac Tissues
6. Removal of 3D Bioprinted Patch from the Needle Array and Patch Maturation
At the end of step 4.4 (co-culture), the cells in each well should aggregate at the bottom of the ultra-low attachment 96-well U-bottom plates to form spheroids by gravity. These spheroids contain hiPSC-CM, HCFs, and HUVECs, and can be visually inspected under light microscopy, where they should appear circular by two-dimensional projection (Figure 1). At the end of step 6.3, the 3D bioprinted cardiac patch should contain tissue voids, due to needle holes cre...
It is important to use beating, functional spheroids for 3D bioprinting. If spheroids are not beating, continuing to use them will invariably result in a non-functional 3D bioprinted patch.
One benefit of this approach is the ability to manipulate the cell content of the patch by varying the total number of cells and the percentage of cardiomyocytes, endothelial cells, and fibroblasts in the spheroids. This allows for many different types of cardiac patches to be printed, with varying histolog...
The authors have nothing to disclose.
The authors acknowledge the following funding sources: Magic That Matters Fund for Cardiovascular Research and the Maryland Stem Cell Research Fund (2016-MSCRFI-2735).
Name | Company | Catalog Number | Comments |
Geltrex | Invitrogen | A1413202 | |
Trypsin/EDTA 0.05% | Thermo Fisher | 15400054 | |
Defined Trypsin inhibitor 0.0125% | Thermo Fisher | R007100 | |
RPMI Cell Media | Invitrogen | 11875-093 | RPMI supplemented with B27 constitutes HIPSC-CM culture media |
B-27 Supplement | Thermo Fisher | 17504044 | RPMI supplemented with B27 constitutes HIPSC-CM culture media |
Countess Automated Cell Counter | Invitrogen | C10227 | |
Human cardiac fibroblasts (adult ventricular type) | Sciencell | 6310 | |
Human umbilical vein endothelial cells | Lonza | CC-2935 | |
PrimeSurface ultra-low attachment 96-well U-bottom plates | Akita Sumitomo Bakelite Co. | MS-9096UZ | |
Regenova Bio 3D Printer | Cyfuse Biomedical K.K. | N/A | www.cyfusebio.com/en/ |
Trypan Blue Solution, 0.4% | Thermo Fisher | 15250061 | |
Troponin T Antibody | Thermo Fisher | 701620 | |
Connexin 43 (Cx43) Antibody | Chemicon | MAB3068 | |
ProLong Gold Antifade Mountant with DAPI | Thermo Fisher | P36935 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved